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Figure 1: A piece of steak breaks on pulling, according to anisotropic muscle fibers in the meat, to reveal fine-scale geometry
around the fracture (top row). A pizza slice is separated from the whole, along the cuts made by an artist, and leaves stretchy
bits of cheese hanging (bottom row). This is an example of artist-controlled fracture design using our method.

ABSTRACT
Fracture simulation of real-world materials is an exceptionally chal-
lenging problem due to complex material properties like anisotropic
elasticity and the presence of material impurities. We present a
graph-based finite element method to simulate dynamic fracture
in anisotropic materials. We further enhance this model by de-
veloping a novel probabilistic damage mechanics for modelling
materials with impurities using a random graph-based formulation.
We demonstrate how this formulation can be used by artists for
directing and controlling fracture. We simulate and render frac-
tures for a diverse set of materials to demonstrate the potency and
robustness of our methods.
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1 INTRODUCTION
We often gaze obliviously at the wide array of material fractures
occurring around us in the real world. However, if we take a closer
look at them, we will notice that not all the materials fracture
the same way. Many real-world materials have anisotropic fibers
along certain directions; this makes them stiffer in these preferred
directions and softer in others. This imbalance of stiffness influ-
ences crack propagation during fracture. In this work, we present a
method to simulate dynamic fracture in anisotropic materials using
a graph-based finite element method.

Moreover, the state or condition of the material affects the frac-
ture as well. While some materials remain fresh, others get cor-
rupted over time due to environmental and human interventions,
which in turn impose uncertainties on the fracture criteria. Purely
deterministic approaches with pre-defined fracture thresholds can-
not model such phenomena. We propose a novel probabilistic dam-
age mechanics model to model changes in material properties due
to the presence of impurities.

Fracture is a prohibitively complex phenomenon to model. In-
cluding anisotropic elasticity and a probabilistic approach of frac-
ture further increases this complexity manyfold. We enhance a
graph-based FEM [Mandal et al. 2021a] [Khodabakhshi et al. 2016]
method for simulating fracture by adding anisotropy to it.

We employ random graph algorithms to implement a novel prob-
abilistic damage mechanics that utilize the graph structure of the
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Figure 2: A meat-filled loaf is torn apart. The outer bread is isotropic while the meat inside contains anisotropic fibers.

simulation object mesh in graph-based FEM to model fracture in
the presence of material impurities. Even when simulation strate-
gies are available for fracture, getting a specific fracture pattern, as
desired by an artist, to appear during simulation can require hours
of manual parameter tuning. We present a method for control of
fracture that allows an artist to direct the fracture by designing
impurity maps on the objects. These maps govern the distribution
of impurities in the material of the object. In conjunction with
our method for simulating fracture in anisotropic materials with
impurities, the impurity maps can guide the cracks formed dur-
ing simulation in a manner such that the fracture pattern closely
resembles the impurity map.

The specific contributions of this work are:
• A remeshing-free method to simulate fracture in anisotropic
materials using graph-based FEM.

• A novel, random graph-based, probabilistic damage mechan-
ics to simulate fracture in the presence of material impurities.

• We prove using a Markov random process abstraction that
even after the introduction of impurities, no sharp disconti-
nuities or spurious divergences arise in the value of various
node parameters of the FEM simulation mesh.

• A method for artist-controlled design of fracture, in the pres-
ence of anisotropy and material impurities.

The rest of the paper is organized as follows. We start by pre-
senting a discussion of related work in Section 2. In Section 3 we
describe howwe incorporate anisotropy into graph-based FEM. Sec-
tion 4 and 5 present our model for probabilistic damage mechanics,
detailing its formulation as a random graph. Section 6 describes our
framework for artist controlled fracture design. Next, we present
the results of fracture simulations created using our method for
various kinds of materials in Section 7. Finally, we conclude our
paper by discussing some future directions for our work.

2 RELATEDWORK
We start with an overview of anisotropic elastic energies for de-
formable solids. Next, we discuss the existing methods for mesh-
based and meshless fracture simulation. Subsequently, we delve
into the graph-based finite element method for fracture simulation.
We end this section by presenting a short review of random graphs.

Finite Element Method is one of the most popular approaches
to model object deformation. Müller and Gross [2004] proposed a
co-rotational model with Cauchy linear strain for deformable volu-
metric mesh simulation. Their model can handle artifacts produced
due to large deformation and rotation. Large plastic flow is rendered
in works by Bargteil et al. [2007], Irving et al. [2004] and Stomakhin
et al. [2012]. Smith et al. [2018] modelled extreme deformation of
flesh using Neo-Hookean elasticity model. Using a set of lower
order invariants the authors later extended their work to include

a larger class of isotropic [Smith et al. 2019] elasticity models. Xu
et al. [2015] proposed a novel algorithm to model anisotropy us-
ing principle stretches of hyper-elastic strain energy density. Kim
et al. [2019] developed a new anisotropic elastic density which is
inversion-free and contains no singularity.

Fracture simulation in computer graphics was first introduced
by Terzopoulos and Fleischer [1988] on visco-elastic fracture sim-
ulation. Early fracture algorithms used to model brittle fracture
using mass-spring dynamics [Hirota et al. 2000] [Aoki et al. 2004].
Early work on FEM-based fracture goes back to the seminal work
by O’Brien and Hodgins [1999]. In their work, the authors present
a nodal stress-based analysis for brittle fracture that was later ex-
tended to ductile fracture [O’Brien et al. 2002]. Müller and Gross
[2004] Bao et al. [2007] also developed algorithms for simulating
brittle as well as ductile fracture. These FEM-based fracture tech-
niques remesh the original mesh periodically to incorporate the
crack opening. Due to multiple remeshing, these methods suffer
from multiple drawbacks like strain accumulation near crack tips,
degenerate element generation and forming ill-conditioned basis
matrices which subsequently lead to severe stability issues. Several
techniques are proposed to alleviate these problems. Some of these
methods include local mesh refinement at run-time to repair de-
generate tetrahedra [Wicke et al. 2010], remeshing depending on
gradient flow for improved fracture resolution [Chen et al. 2014],
adaptive subdivision schemes for tetrahedral [Koschier et al. 2015]
and triangular meshes [Pfaff et al. 2014] along with stress relaxation
around fractured areas. Pfaff et al. [2014] also presents a method
to propagate the fracture along the guided paths. However, their
method requires extensive remeshing which is time-consuming.

Virtual Node Algorithm (VNA) [Molino et al. 2004] simulates
fracture without any remeshing by duplicating the damaged ele-
ments depending on the yield threshold. Extra degrees of freedom
are then added to these elements to incorporate partial or full crack
openings. Later, VNA-based methods are improved to facilitate cut-
ting at lower than mesh resolution [Sifakis et al. 2007]. Like VNA,
eXtended Finite Element Method (XFEM) also adds extra degrees of
freedom to the nodes of a damaged tetrahedron using appropriate
enrichment functions. Koschier et al. [2017] proposed an XFEM-
based algorithm to simulate pre-defined cuts in a 3D mesh. Chitalu
et al. [2020] extended the pre-defined cuts to dynamic brittle frac-
ture generation using a novel displacement-correlated algorithm
on top of XFEM. However, XFEM has several limitations like ambi-
guities of crack-tip enrichment in 3D, instabilities induced by large
volume ratios in Heaviside enrichments and difficulties in handling
branch enrichments in 3D.

Another less explored avenue to simulate fracture is the Bound-
ary Element Method which simulates cracks on the outer surface
mesh as opposed to the volume elements. BEM was introduced to
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graphics by James and Pai [1999] for simulating elastostatic de-
formable objects. Hahn and Wojtan [2015] and Zhu et al. [2015]
used BEM with stress intensity factors (SIFs) along crack fronts to
successfully simulate brittle fracture. To alleviate high computa-
tional cost for solving singular integrals Hahn and Wojtan [2016]
extended the original work to propose an algorithm for fast ap-
proximation of the singular integrals. Currently, to the best of our
knowledge, there exists no work on BEM ductile fracture in graph-
ics. Hahn and Wojtan [2015] varies the toughness throughout the
material (in a single direction) with a cosine interpolation function
that allows to generate granular fracture patterns. However, their
method is deterministic and does not capture the randomness of
fracture. In our method, we can vary the toughness of the material
as per any random fracture patterns drawn by the artist.

Peridynamics directly solves the integral equations of continuum
mechanics. Thus unlike FEM or Material Point Method (MPM), peri-
dynamics enjoys the advantage of not imposing necessary boundary
conditions for simulating fracture. Levine et al. [2015] approximate
the behaviour of peridynamics using mass-spring systems to simu-
late brittle fracture. Chen et al. [2018] presented a peridynamics-
based fracture algorithm for simulating brittle and ductile fracture.

The potential of Material Point Method to handle extreme topo-
logical change was introduced to the graphics community by Stom-
akhin et al. [2013]. Compatible Particle-in-Cell (CPIC) algorithm
proposed by Hu et al. [2018a], allows the simulation of sharp dis-
continuities inside a material. Wolper et al. [2019] introduced MPM-
based Continuum Damage Mechanics (CDM) with a variational
energy-based formulation for crack evolution and fracture gener-
ation. CD-MPM was able to render dynamic fracture simulation
for isotropic materials. Further work [Wolper et al. 2020] explored
non-local CDM with anisotropic damage mechanics to simulate
anisotropic fracture for ductile materials. In a recent work [Fan
et al. 2022] MPM has been used to simulate brittle fracture. Major
limitations of MPM include difficulty in enforcing essential bound-
ary conditions, the disappearance of intricate crack patterns due to
excessive smoothing, and high computational cost.

Reddy and Srinivasa [2015] proposed a finite element analysis
to show that for any hyper-elastic material, the magnitude of the
nodal forces can be decomposed completely along the edges com-
posing the element. Further, the directions of force coincide with
the unit vectors corresponding to the edges. Building upon this
idea, Khodabakhshi et al. [2016] introduces a novel fracture simula-
tion method called Graph-based Finite Element Analysis (Gra-FEA).
The dependency of Gra-FEA on the underlying mesh resolution
is studied in another work [Khodabakhshi et al. 2019]. However,
these Gra-FEA methods only focus on 2D materials consisting of
triangular elements with linear strain energy density. In recent
works, Mandal et al. [2021a] Mandal et al. [2021b] extend the idea
to a dynamic visual simulation of both ductile and brittle fracture
in 3D with linear as well as non-linear strain energy density.

During the last two decades, the random graphmodels have been
used extensively for the studies of evolving communication net-
works. Starting from classic Erdős–Rényi random graph [Gilbert
1959] which randomly joins edges between two nodes, various
random graph algorithms [Barabási and Albert 1999] [Davis et al.
2021] are proposed as models in a variety of problems like the dy-
namic topology of the world wide web to the transmission flow

of the COVID-19 pandemic. Works by [Pittel 2010] and [Janson
and Warnke 2021] give a rigorous mathematical analysis of the
properties of the evolution of dynamic multi-graph networks and
preferential attachment with them. We use a random graph-based
formulation to represent probabilistic damage mechanics in a ma-
terial with impurities.

3 ANISOTROPY IN GRAPH-BASED FEM
We briefly explain the graph-based FEM for fracture simulation.
Then we delve into the details of how we incorporate anisotropic
elasticity in it.

3.1 Graph-based FEM for Fracture
In graph-based FEM, given an object represented as a volumetric
mesh with tetrahedral elements [Mandal et al. 2021a], the graph
structure induced by the edges of the finite elements between the
vertices is exploited for FEM computations. It can be proved [Reddy
and Srinivasa 2015] that for any tetrahedral element,Δ𝑒 , with hyper-
elastic strain energy density, Ψ𝑒 , the nodal internal elastic forces
can be resolved along the edges of Δ𝑒 .

f𝑖𝑛𝑡𝑒𝑖
= −𝑉𝑒

𝜕Ψ𝑒

𝜕r𝑒
𝑖

= −2𝑉𝑒
𝑛𝑒∑︁
𝑗=1
𝑗≠𝑖

𝜕Ψ𝑒

𝜕

(
𝑑𝑒
𝑖 𝑗

)2𝑑𝑒𝑖 𝑗 d̂𝑒𝑖 𝑗 (1)

where f𝑖𝑛𝑡𝑒𝑖
denotes internal elastic force at the 𝑖th node, the param-

eter 𝑑𝑒𝑖 𝑗 = | |r𝑒𝑖 − r𝑒𝑗 | | is the distance between the 𝑖th and 𝑗 th node of
Δ𝑒 and d̂𝑒𝑖 𝑗 is unit vector along 𝑑

𝑒
𝑖 𝑗 . Moreover, 𝑉𝑒 and 𝑛𝑒 represent

volume and the number of nodes of Δ𝑒 respectively.
In order to simulate fracture in graph-based FEM, the rectangular

Cartesian components of the Piola-Kirchhoff stress tensor are pro-
jected along the direction of the edges to calculate the normal stress.
When normal stress along an edge exceeds a critical threshold, it
is labelled as fractured and normal stress along that edge is set to
zero. Finally, the original internal energy density of the fractured
element, Ψ𝑒

𝑜𝑟𝑖 , is then reformulated as

Ψ𝑒
𝑓 𝑟𝑎𝑐

=

[
|𝜎𝑒′12 | + |𝜎𝑒′13 | + |𝜎𝑒′14 | + |𝜎𝑒′23 | + |𝜎𝑒′24 | + |𝜎𝑒′34 |
|𝜎𝑒12 | + |𝜎𝑒13 | + |𝜎𝑒14 | + |𝜎𝑒23 | + |𝜎𝑒24 | + |𝜎𝑒34 |

]
Ψ𝑒
𝑜𝑟𝑖 (2)

where {𝜎𝑒12 . . . 𝜎
𝑒
34} and {𝜎𝑒

′
12 . . . 𝜎

𝑒′
34} are the components of nor-

mal stress tensor along the direction of the edges before and after
fracture respectively. This reformulation of internal hyper-elastic
strain energy density due to fracture helps the fractured pieces
move independently without any explicit remeshing. For more
details regarding the fracture simulation with graph-based FEM,
interested readers may take a look at the work by Khodabakhshi
et al. [2016] Mandal et al. [2021a]. We examined two approaches for
the reformulation of strain energy. The first approach is uniformly
weakening as Equation 2. The other approach is projecting out
stresses along the fractured edges and just weakening the fractured
edge. However, we noticed that for a high-resolution mesh the
results are very similar. We added this comparison study in the
supplement.
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Figure 3: A bar made of pure gold is stretched (Top row). A bar made of gold-copper alloy is stretched (Bottom row). The impure
gold i.e. gold-copper alloy is much more ductile and deforms more before fracturing.

3.2 Anisotropic Elasticity
Isotropic materials compress or stretch equally in all directions
irrespective of the direction of applied force. But many real-world
materials have bundles of fibers in some preferred directions which
makes them stiffer in those directions and softer in others. When
stretched/compressed, these materials will resist more in the stiffer
directions compared to softer directions, before damage sets in.
Accordingly, this makes the fracture of anisotropic materials signif-
icantly different from the isotropic ones.

In order to model anisotropic materials, we add an anisotropic
hyper-elastic strain energy density along with the regular isotropic
strain energy density.

𝚿
𝑒
𝑡𝑜𝑡 = 𝚿

𝑒
𝑎𝑛𝑖𝑠𝑜 + 𝚿

𝑒
𝑖𝑠𝑜 (3)

where𝚿𝑒
𝑡𝑜𝑡 ,𝚿

𝑒
𝑖𝑠𝑜 and𝚿𝑒

𝑎𝑛𝑖𝑠𝑜 denote total, isotropic and anisotropic
strain energy density respectively.

Tomodel anisotropic strain energy density, we define two anisotropic
invariants [Weiss et al. 1996]

𝐼𝑉𝐶 = a𝑇 Cb, 𝑉𝐶 = a𝑇 C𝑇 Cb (4)

where a, b are constant anisotropic fiber directions and they may
or may not be equal to each other. However, as argued by Kim et al.
[2019] Kim and Eberle [2020], there is a major disadvantage of using
these invariants to formulate anisotropic strain energy. As these
invariants are based on the right Cauchy-Green deformation tensor
C = F𝑇 F, it squares away the inversion information of an element
stored in the deformation gradient F. Inspired by lower-order, sign-
preserving isotropic invariants proposed by Smith et al. [2019], Kim
et al. [2019] propose a sign-preserving anisotropic invariant

𝐼4 = a𝑇 Sa (5)

where the stretch matrix S is obtained from the polar decomposi-
tion of deformation gradient F = RS. We use this inversion-safe,
anisotropic strain energy density as follows.

𝚿
𝑒
𝐴𝐴 =

𝜇

2

(√︁
𝐼5 − Π(𝐼4)

)2
(6)

where 𝐼5 = a𝑇 Ca and Π is the signum function. For a detailed
discussion on how this energy density satisfies the condition of
inversion-safety and stability, please refer [Kim et al. 2019]. As an
example of fracture simulation after incorporating anisotropy in
graph-based FEM, see the top row of Figure 1. Here we illustrate
the fracture of a piece of steak which tears along the anisotropic
fiber direction. Also, notice the thread-like stretchy fibers that get
revealed when the meat is torn apart.

3.3 Theoretical Considerations
Graph-based FEM crucially depends on the fact that all involved
strain energies can be represented as a function of edge lengths of
the simulation mesh. This has to be true for anisotropic strain en-
ergy density𝚿𝑒

𝐴𝐴 , for the above-described formulation to work. We
prove that this is indeed so, in the enclosed supplemental document.

The theorems, proved in the supplemental material, together
give a geometric interpretation of any hyper-elastic strain energy
density in terms of the edge length for an undamaged mesh.

We also present a proof sketch in supplemental material to show
that the deformation of the fractured/damaged mesh can then be
interpreted as another smooth map from one Riemannian manifold
to another. We believe this interpretation provides a convincing
argument in support of the representative capacity of graph-based
FEM to model fracture/damage.

4 PROBABILISTIC DAMAGE MECHANICS
So far, we have been simulating materials that are (theoretically)
100% pure. But in the real world, it is impossible to get a mate-
rial without some impurity. Moreover, impurities are distributed
over the material randomly. Incorporating impurities in a mathe-
matically consistent way poses a huge challenge. Producing the
desired effect of these impurities on the fracture simulation is even
more challenging as the random distribution of impurities imposes
probabilistic threshold criteria on fracture.

In graph-based FEM, cracks due to fracture are generated de-
pending on the stress value along the direction of an edge contained
in an underlying graph structure. We find this graph structure is
well suited to use a random graph [Pittel 2010] [Janson and Warnke
2021] strategy to incorporate probabilistic threshold criteria.

Impurity

Figure 4: Impurities are added to a few nodes (shown in red)
of the graph. Edges in light red, between red nodes with
impurity, have the lowest threshold for fracture. Edges in
darker red have only one node with impurity and thus have
a higher threshold for fracture. Black edges between nodes
with no impurity have the highest threshold for fracture.

Let us define a random graph growth process {𝐺 (𝑛𝑣, 𝜇)} on a
vertex set [𝑛𝑣] with 𝜇 successive steps. Let 𝐺 (𝑛𝑣, 0) be an empty
graph. Recursively, given a graph 𝐺 (𝑛𝑣, 𝜇) of vertex degree d =
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{𝑑1, 𝑑2, . . . 𝑑𝑛}, a new graph 𝐺 (𝑛𝑣, 𝜇 + 1) is obtained by inserting
a set of new edges between any two still disjoint random nodes
𝑖 and 𝑗 with 𝑖 ≠ 𝑗 . The probability that an edge 𝑒 will join two
currently disjoint vertices, 𝑖 ≠ 𝑗 , is proportional to (𝑑𝑖 + 𝛼) (𝑑 𝑗 + 𝛼).
Here 𝑑𝑖 , 𝑑 𝑗 are the degrees of 𝑖 , 𝑗 in 𝐺 (𝑛𝑣, 𝜇) and 𝛼 > 0 is a user-
defined constant. The degree of any node refers to the number of
other nodes it is connected to. The sequence {𝐺 (𝑛𝑣, 𝜇)} is a Markov
process.

A multigraph process is defined as a sequence {𝑀𝐺 (𝑛𝑣, 𝜇)} of
multigraphs where self-loops and multiple edges on a single vertex
are allowed. Given a current multigraph,𝑀𝐺 (𝑛𝑣, 𝜇), with degree d
on the vertex set 𝑛𝑣 , a new edge joins two vertices, 𝑖 and 𝑗 , with
probability proportional to 2(𝑑𝑖 +𝛼) (𝑑 𝑗 +𝛼) and forms a loop 𝑖 −→ 𝑖

with probability proportional to (𝑑𝑖 + 𝛼) (𝑑 𝑗 + 𝛼 + 1). Note that in
multigraph while 𝑖 ≠ 𝑗 , they may necessarily not be disjoint. This
random process forms a Markov chain whose state space is the set
of all multigraphs on the vertex set 𝑛𝑣 .

In our context, we start from an intermediatemultigraph,𝑀𝐺 (𝑛𝑣, 𝜇),
with degree d on a vertex set of 𝑛𝑣 nodes. Let us assume that the
structure of the intermediate multigraph which contains 𝑛𝑣 nodes
and 𝑛𝑒 edges, coincides with the initial undamaged graph generated
by our FEM simulation mesh model. Then graph-based FEM for
fracture simulation can be conceived as removing edges from a
graph, contrary to the addition of edges as explained above. More
specifically, the removed edges in𝑀𝐺 (𝑛𝑣, 𝜇) denote those fractured
edges of the FEM mesh on which the the internal force and normal
stress are zero. However, it still remains a Markov chain whose state
space is the set of multigraphs. Given any multigraph,𝑀𝐺 (𝑛𝑣, 𝜇)
with degree d, we define the probability to remove an edge between
vertices 𝑖 and 𝑗 as

𝑝𝑖 𝑗 =

{
1 − ℎ

[
2
(
𝑑𝑖 + 1

|𝛼𝑖 |

) (
𝑑 𝑗 + 1

|𝛼 𝑗 |

)]
Material degradation

1 − ℎ
[
2 (𝑑𝑖 + |𝛼𝑖 |)

(
𝑑 𝑗 + |𝛼 𝑗 |

) ]
Material upgradation

(7)
where 𝛼𝑖 and 𝛼 𝑗 are random but constant initial values associated
with node 𝑖 and 𝑗 . Function ℎ maps the random numbers from
sample space to probability space. Note that we have not included
the probability of self-loop in Equation 7 as it does not occur in a
consistent FEMmesh. To incorporate the impurities of any material,
we assign Additive White Gaussian Noise (AWGN) to the nodes of
the object mesh at the start of the simulation.

𝛼𝑠 ∈ N (0, 𝜎2), 𝛼𝑠 ≠ 0 ∀𝑠 ∈ 𝑛𝑣 (8)

Higher values of 𝛼𝑘 (for any node 𝑘) denote a higher amount of
impurities and vice versa. We consider two different kinds of effects
on material after adding impurities,

• Material degradation: This is the casewhenmaterial strength
decreases after adding impurities e.g., adding mud to as-
phalt/tar.

• Material upgradation: This is the casewhenmaterial strength
increases after adding impurities e.g., adding copper to pure
gold.

Function ℎ can be any strictly increasing function with range [0, 1].
One such function is

ℎ(𝑥) = 𝑒𝑥 − 1
𝑒𝑥 + 1

∀ 𝑥 ∈ (0,∞) (9)

The choice of function depends on the user and is not unique.
In case of material degradation, as evident from Equation 7, if the
amount of impurities increases, higher values of 𝛼𝑘 makes the func-
tion value goes down. This, in turn, makes the fracture probability
of the corresponding edge go up. A similar line of argument can
be applied in the case of material upgradation but in the other way
round. To summarize, in our method edges of the volumetric mesh
have explicit yield strengths that vary based on the probabilistic
approach. As shown in Figure 4, when impurities are added to the
nodes (shown in red), the strength of the edge between them goes
down/up. The change in the strength of the edge depends on the
impurity content of the corresponding nodes. Moreover, if the de-
gree/connectivity of a node decreases, i.e, the neighbourhood of
the node gets damaged, then the probability of that node getting
fractured increases. This closely resembles the real-world phenom-
ena where it is much easier to break a partially damaged material
compared to an intact one.

5 MARKOV RANDOM FIELD BASED ANALYSIS
OF IMPURITY ADDITION

2nd Order 
Neighbourhood

1st Order 
Neighbourhood

Figure 5: Neighbourhood structure of a node. Green and blue
points refer to the 1st-order and 2nd-order neighbourhood to
the original red coloured node respectively.

Even in the presence of impurities, a material can be assumed to
be locally homogeneous. In other words, we can say that the dis-
tribution of any material property of an object is a spatial Markov
Random Field (MRF), i.e., material property for any point in the
object, depends on the properties of other points only in its local
neighbourhood. It is important to examine, after adding AWGN for
impurity, whether the posterior distribution preserves this locality
property. Without this locality property, the object may show un-
desired kinks or spurious divergence due to uneven acceleration
and velocity caused by the addition of impurities.

Let us first consider the neighbourhood structure of a node in
an object. As shown in Figure 5, for any given node 𝑖 , its 1st-order
neighbourhood consists of the nodes which are directly connected
to it. The 2nd-order neighbourhood denotes the nodes that are con-
nected to the 1st-order nodes. Similarly, we can define higher-order
neighbourhoods. We assume that any material property associated
with a node will only depend on its 1st-order neighbourhood.
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Now, let us assume that 𝑋 = {𝑥𝑠 }𝑠∈𝑛𝑣
denotes a Markov process

where 𝑥𝑠 represents any node variable e.g., position, velocity, accel-
eration etc., normalized to [−1, +1]. A neighbourhood relation can
be defined as 𝜂 = {𝜂𝑠 }𝑠∈𝑛𝑣

, where 𝜂𝑠 ⊆ 𝑛𝑣 is the set of neighbours
of 𝑠 . Now for a MRF, the following property has to hold.

𝑃 (𝑋𝑠 = 𝑥𝑠 |𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ 𝑛𝑣, 𝑟 ≠ 𝑠)
= 𝑃 (𝑋𝑠 = 𝑥𝑠 |𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ 𝜂𝑠 )

(10)

where 𝜂𝑠 denotes 𝑛th-order neighbourhood of node 𝑠 . Equation 10
indicates that the value of any node variable depends only on the
nodes which reside inside its local neighbourhood, 𝜂𝑠 .

Using Hammersley-Clifford theorem, we can say that a distri-
bution, 𝑃 defines a MRF on 𝑛𝑣 with neighbourhood relation 𝜂 iff
it is a Gibbs distribution with respect to the same graph, (𝑛𝑣, 𝜂).
Mathematically it can be represented as

𝑃 (𝑋𝑠 = 𝑥𝑠 |𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ 𝑛𝑣, 𝑟 ≠ 𝑠) = exp {−∑
𝑐∈𝐴𝑉𝑐 (𝑥)}∑

𝑠∈𝑛𝑣
exp {−∑

𝑐∈𝐴𝑉𝑐 (𝑥)}
= 𝑃 (𝑋𝑠 = 𝑥𝑠 |𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ 𝜂𝑠 )

(11)
and𝑈 (𝑥) is the energy function

𝑈 (𝑥) =
∑︁
𝑐∈𝐴

𝑉𝑐 (𝑥) (12)

where the set 𝐴 consists of cliques (collection of nodes such that
every two nodes are neighbours) in (𝑛𝑣, 𝜂) that contains 𝑥𝑠 . 𝑉𝑐 (𝑥)
is called the clique potential that only depends on 𝑥𝑠 .

In the Ising model [Ising 1925], which is widely used in this
context, the energy function𝑈 (𝑥) is given by

𝑈 (𝑥) = −𝛽
∑︁
<𝑠,𝑡>

𝑥𝑠𝑥𝑡 , 𝛽 > 0 (13)

where 𝑠, 𝑡 ∈ 𝑛𝑣 denotes all the neighbouring pairs. Using the Ising
model, we can define a prior distribution of𝑋 , i.e., any node variable
without impurity as

𝑓 (𝑥) =
(

1∑
𝑠∈𝑛𝑣

exp {𝑈 (𝑥)}

)
exp

{
−𝛽

∑︁
<𝑠,𝑡>

𝑥𝑠𝑥𝑡

}
(14)

The degradation process 𝑌 = {𝑦𝑠 }𝑠∈𝑛𝑣
is then defined as

𝑦𝑠 = 𝑥𝑠 + 𝛼𝑠 (15)

where 𝛼𝑠 is the normalized randomness in the node variable intro-
duced due to impurity. So the degradation model is a conditional
probability distribution given as

𝑓𝑌 |𝑋 (𝑦 |𝑥) =
(

1
2𝜋𝜎2

) |𝜂𝑠 |
2

exp

{
− 1
2𝜎2

∑︁
𝑠∈𝑆

(𝑦𝑠 − 𝑥𝑠 )2
}

(16)

Now we can define the distribution of node variables after the
impurity is added as

𝑓 (𝑦) =
∫
𝑥

𝑓 (𝑦 |𝑥) 𝑓 (𝑥)𝑑𝑥

=

∫
𝑥∈𝜂𝑠

(
1∑

𝑠∈𝑛𝑣
exp {𝑈 (𝑥)}

)
exp

{
−𝛽

∑︁
<𝑠,𝑡>

𝑥𝑠𝑥𝑡 −
1

2𝜎2
∑︁
𝑠∈𝑆

(𝑦𝑠 − 𝑥𝑠 )2
}
𝑑𝑥

(17)

Now from Equation 17 we can see that node variable distribution
depends only on the nodes 𝑡 that reside inside the 𝑛th-order neigh-
bourhood, 𝜂𝑠 of the node 𝑠 . Thus we can say that 𝑌 is also a Markov
random process. This proves that the addition of impurities does
not affect the locality property of any node variable. We validate our
random graph model for simulation of materials with impurities
with various examples in Section 7.

6 ARTIST CONTROLLED FRACTURE DESIGN

Laser

Pattern

Figure 6: Our interactive user interface allows the artist to
design impurity maps on objects (left). An artist interacts
with and marks shallow cuts on a pizza mesh model using
an impurity map (right).

We present a method to allow artists to design any specific
fracture pattern that they want by leveraging our random graph-
based formulation for impurity addition. An interactive interface,
shown on the left in Figure 6, allows an artist to control a virtual
sculpting tool to interactively create an impurity map on the object.
A surface map can also be propagated inwards into the object, akin
to a volumetric texture. The impurity map is called so because it is
used to control the distribution of impurities in the region that are
marked by the artist.

While using the interface, the artist can draw a free-hand im-
purity map using a laser sculpting tool, by placing it on the object
mesh in any position. When it intersects an edge of the mesh, we
weaken the fracture threshold of that edge by adding impurity to
the two nodes which contain the edge. The artist can also control
the potency 𝛼𝑘 of the impurity being added.

Furthermore, our framework can embed any pattern from an im-
age to an object mesh. Given the image of a pattern, our framework
generates a design with small line segments that closely replicate
the pattern. The user can also translate and rotate this design. The
edges where the segments making up the pattern intersect an ob-
ject mesh, the pattern gets embedded into the mesh as an impurity
map and weakens the intersected edges as discussed before. The
user can also control the weakening parameter value, i.e., lower
the number, weaker the edge strength and vice versa. The zero
value of the weaken parameter corresponds to a sharp cut. During
simulation when the fracture propagates, the cracks are guided by
the impurity map and thus follow the pattern created by the artist.

In the right image of Figure 6, we show the impurity map being
added to a pizza model. Here like a real-life pizza maker who makes
shallow cuts using the laser tool on the pizza to make slices but
does not completely separate them, we weaken the pizza along
these shallow cuts. The final simulation is shown in the bottom row
of Figure 1. When the pizza slice is pulled apart, it closely follows
these shallow cut lines but at the same time generates stretchy bits
of cheese.
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7 RESULTS
We showcase a wide variety of fracture simulation demos to demon-
strate the robustness of our method and the diversity it can handle.1
We use an implicit backward Euler integrator with a conjugate gra-
dient solver [Sin et al. 2013] to solve the system dynamics. All
the simulations are performed on a machine with Intel Core i7-
9750H CPU at 2.60 GHz. Our multi-threaded implementation runs
purely on the CPU using 12 threads and is not accelerated by a GPU.
The simulation results are raytraced in Houdini for visualization.
Simulation parameters for all our experiments are reported in the
supplemental document. The 3Dmodels used to generate the results
are obtained from turbosquid.com, cgtrader.com, free3d.com
and sketchfab.com. Volumetric simulation meshes are generated
using open-source software TetWild [Hu et al. 2018b].

7.1 Anisotropic Fracture
For anisotropic material, we use anisotropic energy density from
Equation 6 along with invertible Neo-Hookean energy density [Xu
et al. 2015]. The plasticity model we use is described in the supple-
mental material.

In the top row of Figure 1 we tear a piece of steak to reveal the
intricate fracture pattern originating along the anisotropic fiber
direction. The anisotropic stretchy muscle fibers inside the meat
can be seen in the figure as fine thread-like structures.

Similarly, in Figure 7 (Top row), a wooden log is broken apart by
pulling it from one side. The log has fibers along the direction of
𝑥-axis. In the figure, these grains produce photo-realistic fracture
effects. In Figure 2, a piece of meat-filled loaf of bread is torn apart.
Here we use a single mesh model with different material properties
at different parts of the mesh. The coating is made of normal bread
modelled as an isotropic material, while the meat inside contains
anisotropic fibers in 𝑥-direction. It can be seen that the two materi-
als fracture differently. The meat resists more before fracture due
to it’s fiber strength.

Figure 7: A piece of dry wooden branch is broken by pulling
it from one side (Top row). A damp branch that has water
(figuratively) as impurity is broken in the same way as be-
fore (Bottom row). The water weakens the integrity of the
material.

7.2 Impurity Induced Fracture
In Figure 7, we compare the fracture of a dry vs a rotten and damp
wooden log. The addition of the impurity weakens the material
1Figure 13 contains an image of raw meat that some viewers may find disturbing.

here, just like a rotten wooden log has lower material strength after
getting damp by absorbing water and thus produces more disjoint
segments. Note that there is no explicit wetting simulation here
and water is (figuratively) being considered to be like a material
weakening impurity, added to produce the effect of dampness in
the material.

Using our impurity-inducing model, we can also strengthen the
material. We demonstrate by simulating the addition of copper to
pure gold. In Figure 3, we stretch a thin bar of pure gold (in the top
row) and gold-copper alloy (in the bottom row). The gold-cooper
alloy demonstrates much more ductility and deforms more before
undergoing fracture compared to the thin bar of pure gold.

7.3 Effect of Impurity Potency

Figure 8: Illustration of impurity map (left). The effect of the
impurity is decreased from left to right (next three).

In Figure 8, we show the effect of impurity potency on fracture.
We take a hollow cylindrical tube and add an impurity map in
the middle of it. The impurity map is displayed on the left-most
image of Figure 8. The impurity map shows the location of the
impurities (in magenta) added to the object. The yellow regions
have no impurity. The tube is then hinged at one end and pulled
from the other. In the next three images of Figure 8, the 𝛼𝑘 value is
decreased from left to right. Higher values of 𝛼𝑘 mean more potent
impurities, i.e., they cause more weakening of the material in this
case. As evident from Figure 8, decreasing the value of 𝛼𝑘 lessens
the effect of impurities on the overall strength of the object and
causes fractures in multiple locations in the tube as opposed to only
in the region where impurities have been added.

7.4 Artist Controlled Fracture

Figure 9: A porcelain column breaks on impact according
to the embedded impurity map (inset images) with a single
sharp fracture line in thefirst two images and amore complex
fracture pattern in the last two images.

Figure 10 shows an impurity map created from an image of a
pattern (pattern is depicted in Figure 6 (left)) applied to a slab mesh
and demonstrates a simulation of controlled ductile fracture. When
the slab is pulled from both ends, it comes apart along the embedded
pattern lines. In the bottom row of Figure 1, we render a pizza slice
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being pulled out from a pizza, which has been pre-cut by an artist as
described earlier. This is another demonstration of artist-controlled
ductile fracture. In Figure 9 a porcelain column is embedded with

Figure 10: The slab model, embedded with the impurity map
created from an image pattern (left), is torn apart by pulling
it from both ends (middle, right).

impurity maps corresponding to a single sharp fracture line and
a more complex fracture pattern. When the column is hit by a
metal ball, the simulation produces sharp shards or fragments that
cleanly break along the fracture edges defined by the pattern. This
illustrates the ability of our method to produce artist-controlled
brittle fractures as well.

7.5 Effect of the Random Graph
The random graph-based implementation is crucial to simulating
materials with impurities and for artist control of fracture. In ab-
sence of the random graph, disintegration due to fracture is more
chaotic and does not follow the impurity distribution closely.

In Figure 11, we see an artist-designed impurity map in the first
image for a brittle object. When simulated with the random graph
formulation, the object breaks only at the intended location, i.e.,
the arm. However, when the same impurity map is used without
the random graph formulation, the simulation causes more dis-
integration than intended. More results on this are shown in the
supplementary video and document.

Figure 11: The artist-created impurity map is shown in the
left image. Simulated fracture patternwith (middle) andwith-
out (right) random graph is shown next.

7.6 Effect of Different Noise Distributions
In Figure 12 we show that altering just the noise distribution model
for impurity addition from Gaussian, to uniform within our random
graph formulation does not produce any large variation in the
generated fracture pattern.

Figure 12: Changing the noisemodel used to add the impurity
within the random graph does not produce much difference
in the fracture pattern. Simulated fracture pattern produced
when the impurity is generated using Gaussian random vari-
able (middle) and uniform random variable (right).

7.7 Comparison Study
7.7.1 Comparison With Real Materials. We compare our fracture
simulation framework with real-world materials. In Figure 13 (top)
we show a piece of raw meat being torn apart by a lion. We render a
similar simulation of tearing of a piece of steak using our framework
beside it. As visible in the figure, our framework can reproduce
the real-world fracture phenomena, e.g., intricate fracture of the
stretchy fibers in the anisotropy direction (green circle), a partially
separated and dangling piece of flesh (blue circle). Similarly, in the
bottom row of Figure 13, we present a real-world and a simulated
fractured wooden branch. As depicted in the figure, our framework
can reproduce various intricate fracture patterns, e.g., extruded por-
tion of broken branch generated due to extra anisotropic stiffness
(green circle) and thread-like stiff wooden fibers (red circle).

Figure 13: A piece of raw meat torn apart by a lion is com-
pared with the tearing of meat simulated using our method
(top). A broken piece of a real wooden branch is compared
with the breaking of a wooden branch simulated using our
method (bottom.) ©Top left image: Dreamstime royalty-free
images.

7.7.2 Comparison With Other Existing Methods. We implemented
the XFEM method presented by Koschier et al. [2017] Mandal et al.
[2022] and simulated the porcelain column fracture example simi-
lar to Figure 9 (left). While the visual simulation of XFEM remains
similar to our method (see supplemental video), our random graph-
based FEM offers a significant numerical advantage over XFEM.
Initially the column object consists of 6.7k DOFs (nodes) and 40.3k
tetrahedra. In order to simulate the split, we need to enrich ap-
propriate nodes for XFEM. After enrichment, the number of DOFs
(original nodes and enriched nodes together) for XFEM simulation
increases to 6.9k for a single split. In contrast, the number of DOFs
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remains the same as beginning in random graph-based FEM. We
noticed simulation of XFEM takes around 2.17 sec/frame while
our graph-based FEM requires only 0.31 sec/frame. The XFEM and
graph-based FEM simulations are run on the same system, with
similar thread-sharing implementations. The underlying collision
detection and visualization strategies also remain the same.

We also present a numerical comparison between our method
and XFEM-based fracture simulation by Chitalu et al. [2020]. Us-
ing their open source code-base [Chitalu 2020], the XFEM-based
method requires 2175 sec to render 16 number of cuts for the same
porcelain column. On the other hand, our graph-based FEM model
requires only 0.43 sec to render the same number of cuts on the
same model. Thus, our method is faster and more efficient than
existing methods in the literature.

We also perform a comparison study between fracture simulation
for isotropic materials performed using the algorithm presented
in [Mandal et al. 2021b] [Mandal et al. 2021a] versus fracture sim-
ulation for anisotropic materials and in materials with impurities,
simulated with our method. For this experiment, we use a rectangu-
lar slab that is hinged at one end and pulled from another end. The
middle image of Figure 14 shows the anisotropic fibre directions,
drawn in black stripes. The impurity map is depicted on the right-
most image of the figure. The impurity map shows the location of
the impurities (in magenta) added to the object. The yellow regions
have no impurity. In Figure 15 we show the fracture results for
isotropic (1st & 2nd column) and anisotropic (3rd & 4th column)
material. Moreover, on the right side of each image, we show its
corresponding strain profile. The strain values are depicted via a
colour map with red (largest), green (medium) and blue (smallest)
colours. Fracture of the same slab with impurity-laden material is
seen in the last two columns of the same image.

The slab made of isotropic material breaks with a nearly clean
horizontal fracture near the free edge being pulled. On the other
hand, the slab made of anisotropic material breaks along fracture
lines that are guided by the anisotropic fiber direction. Here we can
clearly see patches that break along the slanted fracture lines. Due
to the presence of anisotropic fibers, the material is stronger along
that direction. In the last two columns of Figure 15, we show the
fracture of the same slab, made of an impure material. The impuri-
ties are heavily concentrated towards the middle of the slab in the
shape of a band. The slab contains a few more scattered pockets of
impurity over the whole body. It can be seen that the slab primarily
gets damaged along the impurity band and produces more disjoint
fragments compared to the other two cases that have no impu-
rities. The computational cost of the simulation with anisotropic
materials or with materials having impurities is almost the same as
simulating only isotropic materials.

8 CONCLUSION
Our work presents a method to simulate fracture in anisotropic
materials simulated using graph-based FEM. We introduce a novel
probabilistic damage mechanics formulation to incorporate the
uncertainties during fracture, caused by the presence of material
impurities. We leverage this formulation to create a framework
that allows the artist-controlled design of fracture. We demonstrate
the appeal and accuracy of all of the above methods for ductile

and brittle fracture of various objects for anisotropic materials
and materials with or without impurities. Longer-term damage
phenomena like failures caused by fatigue are an interesting avenue
for future work.
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