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Abstract: General relativity describes the curvature of spacetime. Rays of light follow geodesic paths in curved space-
time. Visualizing scenes containing spacetime regions with pronounced curvature requires tracing of these
light ray paths. We present a Monte Carlo approach for non-linear raytracing to render scenes in curved space-
time. In contrast to earlier work, we can accurately resolve ray-object interactions. This allows us to create
plausible visualizations of what happens when a black hole appears in a more known environment, like a room
with regular specular and diffuse surfaces. We demonstrate that our solution is correct at cosmological scales
by showing how spacetime warps around a stationary Schwarzschild black hole and a non-stationary Kerr
black hole. We verify that the solution is consistent with the predictions of general relativity. In the absence
of any curvature in spacetime, our renderer behaves like a normal linear ray tracer. Our method has the poten-
tial to create rich, physically plausible visualizations of complex phenomena that can be used for a range of
purposes, from creating visual effects to making pedagogical aids to understand the behaviour of spacetime as
predicted by general relativity.

1 INTRODUCTION

General relativity changed the way in which we un-
derstand our universe. The theory presented by Ein-
stein in 1915 has been verified via multiple experi-
mental observations. However, the concept of curved
spacetime that is central to this theory stays elusive to
a casual reader. Even students of physics have trouble
visualizing what curved spacetime looks like because
it is so far removed from our daily experience. It was
only recently that a visualization of curved spacetime
was created that is true as per general relativity and it
depicted how a black hole would look to an observer
much closer to it (James et al., 2015a) (James et al.,
2015b). The cosmological phenomenon visualized in
these works were a rotating black hole and a worm-
hole.

A black hole can be described as a region in space
where the gravitational field is so strong that no matter
or radiation can escape. The boundary of the region
from which no escape is possible is called the event
horizon. According to the general theory of relativity,
a body of sufficient mass can deform or warp space-
time around it and result in a black hole. A static black
hole, which possesses no electric charge or angular
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momentum is referred to as a Schwarzschild black
hole (Schwarzschild, 1916). A Kerr black hole (Kerr,
1963) on the other hand, possesses angular momen-
tum and rotates. Another related cosmological phe-
nomenon is a wormhole, which is like a hole punched
through curved spacetime connecting two different
regions of spacetime. An example of this is the Ellis
Wormhole, visualized in the movie Interstellar (Ellis,
1973) (Morris and Thorne, 1988) (Thorne, 2015).

The curving of spacetime, however, is a fact pre-
dicted by the theory of general relativity and is present
in the vicinity of any object that has mass. We are in-
terested in visualizing not only black holes, but any
warped spacetime, both at cosmological and at earth-
like or everyday scales. We present in this paper a ray
tracing method that allows us to visualize any arbi-
trary scene in any type of spacetime. We can stochas-
tically trace rays in the warped spacetime, while tak-
ing care of normal light-surface interactions like re-
flection and refraction. This allows us to visualize ev-
eryday geometry in strongly curved spacetimes. We
believe our work is first of its kind in being able to
create such visualizations. We find the images that
our renderer produces to be extremely useful in un-
derstanding the concept of curved spacetime and vi-
sualizing how the universe behaves in the presence of
gravity. We also believe it is unique in being able to



create physics-based visualizations that are of interest
to generating special effects in cinema and as such,
it is intended to work as a proof of concept that ray
tracing in curved spacetime can easily be integrated
into existing production pipelines. As a result, now
we may have more realistic wormholes opening up in
an alley in New York, which acts as a pathway for
aliens. The major contributions of our work are listed
as below

• We perform secondary ray tracing and resolve all
object-ray intersections in curved space-time.

• We render our scene using complete global illumi-
nations in warped spacetime which is essential to
produce visual phenomena like soft shadows and
caustics.

• We develop a non-linear ray tracing algorithm that
works both in cosmological as well as terrestrial
scale.

We talk about relevant current literature in the next
section. We explain light paths in curved spacetime,
and derive expressions for the geodesics that repre-
sent the light paths in Section 3. We present partic-
ular solutions for the Schwarzschild and Kerr met-
rics for non-rotating and rotating black holes respec-
tively, and for the Ellis metric for wormholes. Then
we present our simple ray integrator in Section 4. De-
tailed results and discussions of the results are pre-
sented in Section 5.

2 RELATED WORK

Astrophysical ray tracers have a long history. These
visualizations have become adept at simulating and
visualizing increasingly complex cosmological phe-
nomena. Gas, dust and other stellar debris that has
come close to a black hole but not quite fallen into
it, forms a flattened band of spinning matter around
the event horizon called the accretion disk. Thin ac-
cretion disks around black holes were visualized in
early work in the area (Luminet, 1979). Subsequent
works added color (Fukue and Yokoyama, 1988),
handled rotating black holes and thicker accretion
disks (Viergutz, 1993) and finally images produced
by a simulated camera flyby near the disk (Marck,
1996). The special relativistic visualization of 4D
space (Müller et al., 2010) and visualization of circu-
lar motion around Schwarzschild black hole (Müller
and Boblest, 2011) have been explored before. The
general relativistic ray tracer GYOTO (Vincent et al.,
2011) uses the Hamiltonian formalism to integrate
the rays backward in time. They also compute the

specific intensity that reaches the observer by in-
tegrating the radiative transfer equation along the
computed geodesic. However, they assume the ob-
jects to be emissive, as most astrophysical objects
of interest in such extreme environments are, and do
not handle reflection and refraction from those ob-
jects, specular or diffuse. Another work presented by
Müller (Müller, 2014) uses the Motion4D library to
handle spacetime metrics and ray tracing. The GPU
accelerated renderer presented in GRay (Chan et al.,
2013) (Kuchelmeister et al., 2012) further parallelizes
the work presented in earlier literature, to increase the
throughput at which rays can be traced. Another GPU
based renderer (Weiskopf et al., 2004) discusses re-
fraction through a continuous medium of varying re-
fractive index as an example on non-linear ray tracing,
but does not tackle refraction within a warped space-
time itself.

Among other work, is also the Black Hole Flight
Simulator (BHFS) (Hamilton, 2008), that shows how
it looks like to travel towards and through various
kinds of black holes. A ray tracing algorithm for
visualizing two different spinning celestial objects, a
neutron star and a quasi-Kerr black hole are described
in (Psaltis and Johannsen, 2012) and (Bauböck et al.,
2012) respectively.

It was only recently that visualizations with an
observer placed closer to the black hole were pro-
duced. The Double Negative Gravitational Renderer
(DNGR) was used to produce the imagery for the
acclaimed movie Interstellar (Thorne, 2015) (James
et al., 2015a) (James et al., 2015b). The renderer
is unique in that it not only solves the equations for
a ray-bundle propagation near a spinning black hole,
but also produces extremely high resolution imagery
required for a cinema production. This is done by
mapping the celestial sphere around a black hole or
a wormhole to the local sky of the observing camera,
while accounting for the change in the cross-section
of the light beam and, color and intensity changes due
to Doppler shifts that occur in the process.

2.1 Comparison to state of the art

We do not claim to present any new astrophysics
insights in our paper, nor do we claim to be bet-
ter than DNGR in all respects. We certainly do not
produce cinematic production quality images. How-
ever, we believe that to the best of our knowledge,
we present the only renderer of its kind that can vi-
sualize highly warped spacetime, both in outer space
and in everyday human-scale scenes like rooms and
buildings. None of the previous works (Müller,
2014), (Kuchelmeister et al., 2012), (James et al.,



2015a), (James et al., 2015b) deal with simulating
complete global illumination in curved spacetime.

In contrast, we can perform secondary ray trac-
ing and accurately resolve ray-object intersection in
curved spacetime. This allows us to perform global
illumination and render complex scenes that consist
of specular and diffuse surfaces. Thus unlike previous
works, we can generate soft shadows, caustics etc in
curved spacetime. Moreover, we use bidirectional ray
tracing for the regions where less number of primary
rays reach and perform local smoothing for regions
with high numerical error. Prior work like (Müller
et al., 2010) and (Müller and Boblest, 2011) deal with
non-linear raytracing in a restrictive class of space-
time. Our method can handle any spacetime topology.

Visualizing the warping of spacetime around fa-
miliar geometries that represent our everyday experi-
ences provides an unique perspective from which to
understand curved spacetime, which leads us to claim
that our renderer has unique pedagogical value for
the casual science enthusiast who wants to understand
general relativity, and to teachers and students of the
subject. It is also of immense use to CGI profession-
als who have to architect such spacetimes for special
effects in their productions, while staying true to its
physics underpinnings.

3 LIGHT PATHS IN CURVED
SPACETIME

Black
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Secondary ray from star

Ray surface from caustic, through Einstein Ring to camera

Einstein Ring

Camera sky
Celestial
Sphere

Caustic

Star

Figure 1: Schematic diagram showing the bending of light
rays around a black hole.

Here we present the underlying theory behind deriv-
ing the light paths in curved spacetime, as dictated by
general relativity. In layman terms, all objects with
mass bend spacetime with the curvature being pro-
portional to their mass. Objects like neutron stars and
black holes, which have a lot of mass or energy, gener-
ate strong enough gravitational forces to warp space-
time in a very pronounced manner.

The warping of light rays around a black hole is
schematically shown in Figure 1. Two light rays ema-
nating from a star on the celestial sphere are deflected

around opposite sides of the black hole due to warp-
ing of spacetime. This will happen to all the stars on
the celestial sphere near the black hole and this phe-
nomena is known as gravitational lensing. The Ein-
stein ring is an image of a point source that is on the
celestial sphere, diametrically opposite to the camera.
This point is the Caustic point, and the orange surface
shows the locus of rays from this point converging at
the camera. The Einstein ring is the intersection of
these rays with the camera sky. For the star we will
see two images in the camera sky, one inside the Ein-
stein ring and the other outside it.

The principle of least action dictates that light rays
follow geodesics in this curved spacetime. In order to
generate the image of the curved spacetime due to the
distortions produced in it by gravitational influence
of phenomena like black holes, we must trace these
geodesic paths. We derive the expressions for these
geodesic paths, from principles of general relativity.

The notation used here is the index notation and
Einstein summation convention used in general rela-
tivity. These have been explained in Appendix A. In-
terested readers can refer (Misner et al., 1973) (Hartle,
2003) (Collier, 2013)for more details.

Distance between two points in a spacetime is
given by a metric. If the Minkowski metric is ηαβ,
then proper time, τ can be written as

dτ
2 = ηαβdξ

αdξ
β (1)

where proper time is the time measured by an ob-
server in their own rest frame. The Principle of Equiv-
alence of Gravitation and Inertia states that at every
spacetime point in an arbitrary gravitational field it is
possible to choose a locally inertial coordinate sys-
tem such that, within a sufficiently small region of the
point in question, the laws of nature take the same
form as in an accelerated Cartesian coordinate system
in the absence of gravitation. Therefore, for a parti-
cle moving purely under the influence of gravitational
forces, there is a freely falling coordinate system ξ

α

in which its equation of motion is that of a straight
line in spacetime (or equivalently is a geodesic of the
spacetime). This can be written as

d2ξα

dτ2 = 0 (2)

Considering any other coordinate system xµ, the
freely falling coordinates ξ

α can be considered to be
functions of xµ, and Equation 2 can be re-written as

d
dτ

(
∂ξα

∂xµ
dxµ

dτ

)
= 0 (3)

∂ξα

∂xµ
d2xµ

dτ2 +
∂2ξα

∂xµ∂xν

dxµ

dτ

dxν

dτ
= 0 (4)



Multiplying this by
∂xλ

∂ξα
and simplifying, gives us

the equation of motion of the particle as

d2xλ

dτ2 +Γ
λ
µν

dxµ

dτ

dxν

dτ
= 0 (5)

where Γ
λ
µν is the connection coefficient or Christoffel

symbol, defined by

Γ
λ
µν =

∂xλ

∂ξα

∂2ξα

∂xµ∂xν
(6)

Since light rays travel along null geodesics, i.e.,
paths on which proper time does not change, dτ =
0, we replace dτ with another parameter ζ to get the
geodesic equation that gives us the path of the light
ray. In such a case, ζ represents the affine parameter
that varies along the geodesic.

d2xλ

dζ2 +Γ
λ
µν

dxµ

dζ

dxν

dζ
= 0 (7)

3.1 The Hamiltonian Formulation

The (Euler-Lagrange) geodesic equation derived in
the previous section, though analytically perfect is not
amenable to numerical simulation. For that purpose,
we use a Hamiltonian formulation of the equation of
motion. If we note that proper time can be written in
an arbitrary coordinate system in terms of the metric
tensor as

dτ
2 = gµνdξ

µdξ
ν (8)

where gµν is defined as

gµν =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ (9)

Now, a Hamiltonian can be constructed from the
metric of the (pseudo-Reimannian) manifold repre-
senting the spacetime as

H (xα, pα) =
1
2

gµν (xα) pµ pν (10)

Here gµν are the contravariant terms of the metric, xα,
is the coordinate of the photon travelling along the ray
and pα is the generalized momentum.

The equations of motion can now be written as

dxα

dζ
=

∂H
∂pν

= gαν pν (11)

d pα

dζ
=− ∂H

∂xα
=−1

2
∂gµν

∂xα
pµ pν (12)

It can be proved that these equations are to-
gether equivalent to Equation 7. This form makes

it easy for us to write 6 first order differential equa-
tions for the 6 variables of motion (three coordi-
nates, three momenta), which can then be integrated
to get the ray path. We can solve these equations
for any given spacetime metric. In the next section,
we present the solutions for the Schwarzschild, Kerr
and Ellis metrics, which describe spacetime around a
Schwarzschild black hole, Kerr black hole and Ellis
worm hole respectively. In the all the metric equa-
tions discussed below, we have assumed light speed
c = 1.

Figure 2: Here we can see an accretion disk rendered around
a Schwarzschild black hole rendered using our ray tracer.

3.1.1 The Schwarzschild Metric Solution

The Schwarzschild solution was the first exact solu-
tion to the Einstein field equations (Schwarzschild,
1916). It describes a static, spherically symmetric,
gravitational field in the empty region of spacetime
near a massive spherical object. In isotropic coordi-
nates, the metric is given by

ds2 =

(
1− rs

4R
1+ rs

4R

)2

dt2−
(

1+
rs

4R

)4 (
dx2 +dy2 +dz2)

(13)
Here rs is the Schwarzschild radius, rs = 2GM , where
G is the gravitational constant and M is the mass of
the body. R is the radius of the spherical body. The
contravariant metric tensor can thus be written as

gµν = diag
((

1− rs
4R

1+ rs
4R

)2

,−
(

1+
rs

4R

)4
,

−
(

1+
rs

4R

)4
,−
(

1+
rs

4R

)4
) (14)



Now, for α= 0, xα≡ t, the equations of motion, Equa-
tions 11 and 12 give

dt
dζ

=

(
1+ rs

4R
1− rs

4R

)2

pt (15)

d pt

dζ
= 0 (16)

The second of these equations implies that pt is a con-
stant, and thus we can conveniently choose pt = −1
to get

dζ

dt
=−

(
1− rs

4R
1+ rs

4R

)2

(17)

We similarly write for α = 1,2,3 the equations

dxα

dζ
=−

(
1+

rs

4R

)−4
pα (18)

d pα

dζ
=

1
2R3

((
p2

x + p2
y + p2

z
)(

1+ rs
4R

)5 +

(
1+ rs

4R

)(
1− rs

4R

)3

)
rsxα

(19)
Using the equation for dζ

dt , we can obtain

dxα

dt
=
(

1+
rs

4R

)−6(
1− rs

4R

)2
pα (20)

d pα

dt
=− 1

2R3

((
p2

x + p2
y + p2

z
) (1− rs

4r

)2(
1+ rs

4r

)7

+

(
1−
( rs

4r

)2
)−1)

rsxα

(21)

Since there is no cross dependence amongst coor-
dinate evaluations, we can normalize pα, and it does
not make any difference to integration, except chang-
ing the functions by a scale factor. It just results in
time re-scaling, and does not affect us for a static vi-
sualization.

We integrate Equations 20 and 21, to get the path
of the light ray in a spacetime near a Schwarzschild
black hole. An example of a scene with a
Schwarzschild black hole can be seen in Figure 7.
Figure 2 shows a realistic looking accretion disk
where the warping of spacetime bends the disk and
makes it appear around the Schwarzschild black hole.

The solution for other metrics can be similarly de-
rived, and therefore we can handle any arbitrary met-
ric representing a spacetime.

3.1.2 The Kerr Metric Solution

The Kerr metric describes the geometry of empty
spacetime around a rotating, uncharged, axially-
symmetric black hole. In spherical coordinates the

Kerr metric (Chandrasekhar, 2002) for a mass M ro-
tating with angular momentum J is given as

ds2 = ρ
2 ∆

Σ2 dt2− Σ2

ρ2

(
dφ− 2aMr

Σ2 dt
)2

sin2
θ

− ρ2

∆
dr2−ρ

2dθ
2

(22)

where a= J/M, ρ
2 = r2+a2 cos2

θ, ∆= r2−2Mr+
a2, δ = sin2

θ, Σ
2 =

(
r2 +a2)2−a2

∆δ.
Here, the contravariant metric tensor is given by

gµν =



1− 2Mr
ρ2 0 0 2aMr sin2

θ

ρ2

0 −ρ2

∆
0 0

0 0 −ρ2 0

2aMr sin2
θ

ρ2 0 0
−
[
(r2 +a2)+

2a2Mr sin2
θ

ρ2

]
sin2

θ


(23)

Evaluating the Hamiltonian, as explained in Sec-
tion 3.1, we get the rate of change of position with
time as

dr
dt

=
∆

ρ2

(
dζ

dt

)
pr (24)

dθ

dt
=

1
ρ2

(
dζ

dt

)
pθ (25)

dφ

dt
=

pt
2aMr sin2

θ

ρ2 + pφ

(
1− 2Mr

ρ2

)
pt

[
(r2 +a2)+ 2aMr sin2

θ

ρ2

]
sin2

θ− pφ
2aMr sin2

θ

ρ2

(26)

where
dζ

dt
is defined as

dζ

dt
=

(
1− 2Mr

ρ2

)[
(r2 +a2)+ 2aMr sin2

θ

ρ2

]
sin2

θ+
(

2aMr sin2
θ

ρ2

)2

pt

[
(r2 +a2)+ 2aMr sin2

θ

ρ2

]
sin2

θ− pφ
2aMr sin2

θ

ρ2

(27)
The rate of change of momentum with time is simi-
larly obtained as

d pr

dt
= M

(
−r2 +a2 sin2

θ

ρ4

)
ṫ

−2aM sin2
θ

(
−r2 +a2 sin2

θ

ρ4

)
φ̇

+
∆r−ρ2(r−M)

∆2
ṙ2

ṫ
+ r

θ̇2

ṫ

+

[
r+a2M sin2

θ

(
−r2 +a2 sin2

θ

ρ4

)]
sin2

θ
φ̇2

ṫ
(28)



d pθ

dt
=

2a2Mr sinθcosθ

ρ4 ṫ

− 4aMr(ρ2 sinθcosθ+a2 sin3
θcosθ)

ρ4 φ̇

− a2 sinθcosθ

∆

ṙ2

ṫ
−a2 sinθcosθ

θ̇2

ṫ

+
[
(r2 +a2)sinθcosθ

] φ̇2

ṫ

+

[
2a2Mr

ρ4 (2ρ
2 sin3

θcosθ+a2 sin5
θcosθ)

]
φ̇2

ṫ
(29)

d pt

dt
= 0 (30)

d pφ

dt
= 0 (31)

where ẋ =
dx
dτ

for any variable x.These equations are
stable for numerical integration, except at the poles
θ = 0 and θ = π. In this formulation, pt and pφ are
conserved along the ray. The ray has two more con-
served quantities as explained below. These are the
axial angular momentum, B1 and total angular mo-
mentum, B2. We use these two quantities to track the
stability of the numerical integration during path trac-
ing.

B1 =−
pφ

pt

B2 =

p2
θ
+ cos2 θ

(
p2

φ

sin2
θ
−a2

)
p2

t

(32)

One can verify that the solution of Kerr black hole
metric reduces to the solution of Schwarzschild black
hole metric when a = 0. Thus, as the value of a, i.e.,
angular momentum per unit mass increases, the ro-
tational energy present in the black holes increases.
Now as per Einstein’s general theory of relativity, this
rotational energy term contributes to the mass of the
black hole. Thus the effective mass of a Kerr black
hole is more than it’s original/irreducible mass. It can
be proved (Chandrasekhar, 2002) that the total mass
equivalent M of the black hole including its rotational
energy and its irreducible mass Mirr are related by

M = 2

√√√√ M4
irr

4M2
irr−

a2

G2

(33)

As a result when
a
M

varies from 0.0 to 1.0 the equiv-
alent mass of Kerr black hole varies from M = Mirr
to M =

√
2Mirr. So the spacetime distortion is greater

for the Kerr black hole which has a higher
a
M

ratio
which in turn implies more rotational energy. We

demonstrate the variation of this distortion in Fig-
ure 10.

3.1.3 The Ellis Metric Solution

The Einstein field equations have valid solutions that
contain wormholes. A wormhole is like a tunnel be-
tween two points in spacetime. One of the earliest
known traversable wormholes is the Ellis wormhole.
The Ellis wormhole metric (Ellis, 1973), in spherical
coordinates, is given by

ds2 = dt2−dl2− r2 (dθ
2 + sin2

θdφ
2) (34)

where r is a function of the coordinate l, defined as

r =
√

ρ2 + l2 and ρ is a constant.
The Hamiltonian in this case is as follows

H =
1
2

[
p2

t − p2
l −

p2
θ

r2 −
p2

φ

r2 sin2
θ

]
(35)

Since H is independent of the time parameter t and φ,
pt and pφ are conserved along the ray. The total angu-
lar momentum is also conserved, as the wormhole is

spherical and is given by B = p2
θ +

p2
φ

sin2
θ

. Evaluating

the Hamiltonian, we obtain the equations for the rate
of change of position and momentum along time. Let

dt
dζ

= pt =−1 (36)

which shows that ζ = t, up to a constant, and replac-
ing ζ by t gives us five equations for l,θ,φ, pl , pθ as
functions of time t, along the ray.

dl
dt

= pl ,
dθ

dt
=

pθ

r2 (37)

dφ

dt
=

pφ

r2 sin2
θ
,

d pl

dt
= B2 dr/dl

r3 ,
d pθ

dt
=

p2
φ

r2
cosθ

sin3
θ

(38)
These equations are also stable for numerical integra-
tion, except at the poles θ = 0 and θ = π. Integrating
these gives us the geodesics that the light rays follow
in the spacetime around an Ellis wormhole.

4 IMPLEMENTING RAY-OBJECT
INTERACTIONS IN CURVED
SPACETIME

We use a Monte Carlo path tracer to render curved
spacetime for visualization. An important step in path
tracing is calculating the intersection of the sample
ray with the geometry in the scene. For rays that



travel in a straight line, and hence can be represented
by a one parameter equation, it is easy to find closed
form expressions for intersection with simple objects
such as spheres, cylinders, cones and cuboids. Even
complicated geometry can be represented with trian-
gle meshes and a ray-triangle intersection is not hard
to compute.

For warped spacetime, we have to integrate the ray
in time, and even for the simplest of objects, it is of-
ten not possible to find an analytic solution for the
intersection. A numerical solution also seems diffi-
cult when we want our scheme to be compatible with
a potentially arbitrary set of metrics and geometrical
objects. We find an intersection by integrating the
rays one step along the null geodesic at a time, and
we keep decreasing this step size as we approach an
object until we converge to an intersection within ma-
chine precision.

Therefore, in the overall Monte Carlo path tracing
loop we replace the instantaneous ray directions by
those given by the solution to the null geodesic, as
derived in the previous section, and we step along this
direction as explained in Algorithm 1

Algorithm 1 Path tracing & ray-object intersection in
curved space

1: while number of iterations < MAXITER do
2: Let the current position along the Ray be xα.
3: Let current time be t and current time

step be dt.
4: Move forward from this position by integrating

the geodesic, to a new position along the ray yα.
5: Let n̂ be unit object surface normal.
6: if xα · n̂ 6= yα · n̂ then
7: Find perpendicular distance, δ, to

the object surface from current point.
8: if δ < ε then
9: return radiance and normal at

point on surface.
10: else
11: Reset current position on ray to xα.
12: dt = dt/2.
13: end if
14: end if
15: end while
16: return no intersection (radiance returned is zero).

In our implementation, ε is defined to 1e−10. We
use a Runge-Kutta Order 4 integrator for our path
tracer. Depending on scene complexity, the maxi-
mum number of iterations (MAXITER) for our exper-
iments varies from 100 to 4000 and our starting time
step size, dt, varies from 10.0 to 0.5. Specifically,

for generating renders with the Ellis wormhole metric
and Kerr black hole metric, we monitor the constants
for a geodesic, pφ, pθ and B,B1,B2. These constants
are monitored through the integration and if they de-
viate from the expected values by more than a spec-
ified threshold, we halve the time step for the inte-
gration. If they deviate further than a stricter thresh-
old, we simply terminate the integration for that ray
path (geodesic), and mark the corresponding pixel as
erroneous. We later process these erroneous pixels
through a local smoothing step to improve the image
in the error region. The results of this error correction
can be seen in Section 5.

We also sample our rays on a jittered grid to get
an anti-aliased image. On the CPU, we use OpenMP
to speed up the outermost ray tracing loop by using
omp parallel. Apart from that, the only other point
of note was that to render a image of size 1024×768
we had a global work size of 1024×768, so one work
item per pixel is used which computes the intensity at
that pixel. Thus, the memory available on the graph-
ics card is a restriction in such a case.

5 RESULTS AND DISCUSSION

Here we present extensive demos of our spacetime
renderer.

5.1 Validation Results

A renderer that claims to render curved spacetime
must also work correctly when spacetime is not
curved, i.e., the trivial solution of the Einstein field
equations. So we used a Minkowski metric in our
path integration algorithm, and rendered the Cornell
room. The output exactly matches the expected out-
put of a normal Monte Carlo path tracer that works in
flat spacetime. This is shown in Figure 3.

In order to validate the path tracing in curved
spacetime, we render known models of cosmological
phenomena. We show our simulation of an Einstein
ring, as visualized using our renderer in Figure 4. We
further show our render of gravitational lensing, and
distinct multiple images of a star being produced due
to the phenomena in Figure 5. We can see that the
images of the stars produced by gravitational lensing
are stretched. This is because of the way spacetime
warps around the black hole and the fact that light
paths that start out together spread (or squash) during
the process. If for visual aesthetic reasons we want
stars to only appear as point sources, even in the dis-
torted starfield, it can be achieved by tracing light ray



Figure 3: The image of a Cornell box generated by our code
in a flat spacetime, where all rays travel in a straight line.

bundles, instead of single light rays, and then com-
puting the effect of spacetime distortion on the cross
sections of these light ray bundles.

Figure 4: This Einstein ring is produced by placing a light
source behind a black hole diametrically opposite the cam-
era, at the caustic point. We cannot directly see the light
source, but the rays can curve around the black hole to reach
us. The warping of the surrounding starfield follows the pre-
dicted pattern.

We also show the accretion disk around a station-
ary and rotating black hole. Figure 6 shows a thin
accretion disk with a color swatch texture on it being
warped by two different black holes. We can look at
the color of the paint swatch at a location on the disk
and see that parts of the disk are visible more than
once around the black hole. The warping of spacetime
bends the disk and makes it appear around the black
holes. Moreover, the colour patches on the accretion
disk of Kerr black hole appear to be more warped
compared to the Schwarzschild black hole. This is be-
cause of the rotational drag present in the Kerr black
hole. The

a
M

ratio of the Kerr black hole is 0.9.

Thus we see that our renderer correctly produces

visualizations of expected cosmological phenomena
as is predicted by the theory of general relativity. We
next demonstrate our results on everyday scenes, ren-
dered in curved spacetime.

Figure 5: Here we can see a starfield warped by a
Schwarzschild black hole. Distinct multiple images of the
same stars can be seen. To illustrate this we have marked a
star in bright yellow in the undistorted starfield image seen
on the left. We can see two images of the bright star in the
starfield warped by the black hole, in the right image. The
primary image of the star is seen on the top, marked by the
red circle and the secondary image of the star is seen on the
bottom, marked by the red triangle.

Figure 6: Here we see an accretion disk around a
Schwarzschild black hole on the left and Kerr black hole
on the right. The undistorted paint swatch texture used on
the disk can be seen on the lower left corner. The black hole
warps spacetime and portions of the same paint swatch ap-
pears both below and above the black hole. This is because
the light rays from the disk are bent by the black hole along
multiple paths and form repeated images. Moreover, in the
rotating black hole straight radial lines on the texture appear
curved due to the more pronounced curvature of spacetime.

5.2 Everyday Scenes Around a
Schwarzschild and a Kerr Black
Hole

The everyday scene we choose here is the Cornell
room scene shown in Figure 3. We can see a number
of global illumination phenomena in this room, in-
cluding multiple reflections and refractions, caustics,
area lights and soft shadows, and diffuse to diffuse
light transfer. We render a Schwarzschild and multi-
ple Kerr black holes with different

a
M

ratio.

In Figure 7 we show a Schwarzschild black hole
open in the middle of the room. Notice the bending
of the geometry of the room in the warped space-



Figure 7: The image illustrates a stationary Schwarzschild
black hole of radius 5 units placed right in the center of the
Cornell room.

time around the black hole. The black hole has a
event horizon of radius 5 units. The black hole is
in the middle of the room, even in depth, not on the
back wall. In Figure 8, a Schwarzschild black hole

Figure 8: We place a Schwarzschild black hole inside the
refractive glass sphere. We can clearly see the images of the
walls being sucked in towards the center. In the zoomed up
inset image, we can see two images of the room on the right
hand side, both being curved and refracted from different
regions.

of Schwarzschild radius 1.6 units sits inside a refrac-
tive ball of refractive index 1.5 which has a radius of
16 units. The image is formed because of a combi-
nation of the lensing effect by the black hole and the
refraction from the ball’s surface. We can see rings of
darkness in the regions where the black hole directs
light rays at an angle such that they don’t refract out
of the ball, while the lit rings are regions where the
light refracts towards us after being curved from the
black holes. Very notable is the dual image of the re-
fractive ball against the blue background on the right
hand side of the ball. Those rays reflect off the re-
flecting ball on the left and then enter again into the

refractive ball, where the black hole curves different
rays from the same part of the scene into different re-
gions of the image, thus allowing us to see multiple
images of the same source. Similar effect can be seen
for a Kerr black hole.

Figure 9: The image shows a rotating Kerr black hole in a
starfield. Warped spacetime can be clearly seen here along
with phenomena like gravitational lensing.

Figure 9 illustrates a warped starfield in presence
of a rotating Kerr black hole with a/M ratio of 0.9.
In Figure 10 we show Kerr black holes with different
a/M ratios, in the middle of the room. The bending
of the geometry of the room in the warped spacetime
around the black hole is more pronounced as the ra-
tio a/M increases. All the black holes have an event
horizon of radius 5 units. Same as before all the black
holes are in the middle of the room (even in depth)
and not on the back wall.

Gravitational lensing, as explained in Section 3 is
seen with streak lines formed by images of stars in the
presence of a moving observer (James et al., 2015a).
We show lensing due to two kinds on black holes in
Figure 11, where we have colored a few lines on the
grid so that we can track where the exact primary and
secondary images are formed.

5.3 Everyday Scenes Around an Ellis
Wormhole

We now present our renders for visualizations around
an Ellis wormhole. A wormhole connects two dif-
ferent regions in spacetime, so light rays can travel
through the wormhole from one region to another. In
our final sequence of renders, we show a view from a
wormhole, with one end inside the room and the other
end in outer space in Figure 12. A satellite (shown as
the green cylinder) orbits the earth in outer space.

In Figure 13, two images each of both the earth
and the satellite can be seen as crescent shaped disks



(a) a = 0.5,  M = 2.5

(f) a = 2.25,  M = 2.5

(b) a = 1.0,  M = 2.5 (c) a = 1.5,  M = 2.5

(d) a = 1.75,  M = 2.5 (e) a = 2.0,  M = 2.5

Figure 10: These are Kerr black holes of radius 5 units and varying a/M ratios placed right in the center of the Cornell room.
In the left, the spacetime distortion is less as the black hole has a lower a/M ratio compared to right one. In the right image
the distortion is so high that the light is not able to reach everywhere in the scene, thus giving the image a darker appearance.

(a) Schwarzschild Black Hole (b) Kerr Black Hole

Figure 11: Here we show another example of gravitational
lensing rendered by our path tracer for two kinds of black
holes. A rectangular grid has been mapped on the back wall
of the room, on which we have coloured one horizontal line
red and one vertical line green. The red band on top of the
black hole is the primary image of the red line, whereas the
curved red line at the bottom that starts and end at the black
hole, is the secondary image of the red line. Similarly, the
green line to the right is the primary image, and to the left
is the secondary image. Moreover for Kerr black hole the
spacetime distortion is more as evident from the curvature
of lines.

in outer space when looked at from the side of the
wormhole that is inside the room. Similarly the room
can be seen when looked at from the side of the worm-
hole that is in space as shown in Figure 12. This
demonstrates that rays of light do correctly bend from
one spacetime region to another, via the wormhole as
is expected.

The view of the room appears dim when seen
through the wormhole end in outer space as in the
Monte Carlo path tracer very few ray samples make

Figure 12: The top row shows the view from one end of
the Ellis wormhole that is in outer space. The left image is
generated with normal Monte Carlo path tracing, the mid-
dle with Bidirectional path tracing and the final image has
additional local smoothing applied to the regions where the
wormhole metric is not numerically stable. The bottom row
shows detail of what happens in one of the regions of nu-
merical instability on the top rim of the wormhole with the
three respective rendering methods used in the top row.

it through the wormhole back to the light source in
the room. This can be corrected by bidirectional path
tracing in curved spacetime, caching the illumination
from the light source to the walls in the room in light
maps stored on the room walls.

The wormhole geodesic solution is not well be-
haved near the poles, as is explained earlier. We ter-
minate the rays near the poles to avoid numerical in-
stability, which causes the black protruding error en-
velops to be seen coming out of the wormhole. The
black error regions can be filled by propagating the



intensity information from nearby non-error pixels to
the pixels that are in the error envelop. This is like
local smoothing at these pixels. We can also use more
complex reconstruction kernels to cover up the error
regions, if desired. We compare the renders gener-

Figure 13: These show the view through the end of an Ellis
wormhole that is inside the room. The wormhole also exerts
strong gravitational forces on its surrounding spacetime and
distorts the geometry of the room. The earth and the satel-
lite from the other side of the wormhole can be seen through
it as crescent shaped disks. The left image has pronounced
error regions at diametrically opposite sides of the worm-
hole’s mouth which are seen as black protrusions. The right
image has been locally smoothed by our renderer in the er-
ror regions.

ated by our Monte Carlo path tracer, our Bidirectional
path tracer and our Bidirectional path tracer with local
smoothing in error regions in Figure 12 that shows the
view from the end that is in outer space. We can see
that the view of the room in the wormhole improves
a lot with bidirectional path tracing, and the error re-
gions are significantly reduced due to the smoothing.
Figure 13 shows the view from the room side of the
wormhole.

5.4 Computational Complexity

All the images are rendered on a 2.4 GHz Intel i5
CPU using 4 threads with 1000 samples per pixel.
Here we report the timing to render an image of size
1024×768 of a Cornell box, containing a mirror and
a glass sphere, by placing a black or worm hole of size
5 units in the middle of the box. With Schwarzschild
black hole it takes around 80 minutes to render. Ren-
dering time with Kerr black hole ranges from 100
minutes (a/M = 0.1) to 200 minutes (a/M = 0.9).
Due to bidirectional ray tracing and error smoothing
the Ellis wormhole takes longer, nearly 250 minutes.

5.5 Limitations of Our Renderer

Our results are limited somewhat in the complexity of
our scenes, but we do believe we demonstrate the full
range of capabilities that our prototype system cur-
rently has. One major limitation of our renderer is that
it cannot visualize dynamic scenes in curved space-
times, as the animation trajectories of such movement

would also curve (in all four dimensions) that we do
not presently compute. Also of interest may be setting
up space partitioning schemes in curved spacetime to
accelerate such renders.

Also, errors similar to the Ellis wormhole appear
in the images with a Kerr black hole too. We can ap-
ply the same correction to those images as well, which
we have not yet done in the current implementation.

6 CONCLUSION

We present a method to render warped spacetime. We
do this by tracing rays along the null geodesic for
the spacetime, where the spacetime geometry is de-
scribed by its metric. We present a generic ray path
integration scheme that allows us to trace these rays
once the metric has been specified, and the desired
geodesic equations have been derived. This scheme
allows us to handle ray-object intersections and illu-
mination phenomena while rendering curved space-
time. We show a number of results to validate the out-
put that our renderer is producing, on standard scenes
and cosmological phenomena that have been previ-
ously visualized. Then we render everyday scenes at
terrestrial scales in warped spacetime, around black
holes and wormholes. We believe that these visual-
izations give us a unique understanding of spacetime
in everyday and familiar settings, making it of intrin-
sic pedagogic value. This rendering method is also
very easy to integrate in any path tracer, and there-
fore in existing production pipelines. This also makes
it ideal for producing VFX that are better and more
accurately modelled with real physical basis.
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APPENDIX

Index Notation and the Einstein Summation Con-
vention
In Cartesian coordinates, A vector V consists of a
product of its components (Vx,Vy,Vz) and its basis
vectors (êx, êy, êz)

V =Vxêx +Vyêy +Vzêz (39)

In index notation, this can be concisely written as V=
Viei. Contravariant vectors (and tensors) are denoted
by an upper index (e.g. V α), while covariant vectors
are denoted by a lower index (e.g. Vα).

Spacetime has four coordinates. It is convention
to use Greek indices (α,β,γ . . .) to represent them, the
index taking values 0,1,2,3 where 0 refers to the time
coordinate and 1,2,3 to the three spatial coordinates.

In Einstein summation convention when an index
occurs twice in the same expression, it means that the
expression is implicitly summed over all possible val-
ues for that index. For Cartesian vectors, the scalar
product A ·B = AxBx + AyBy + AzBz can be written
in this convention simply as AiBi. Tensors can have
more than one index. Two tensor Xµν and Y ν being
summed over ν = 0,1,2,3 can be written as XµνY ν.
The index ν here is known as a dummy index and the
µ as a free index.

It should be noted that free indices only appear as
either subscript or superscript, never as both and they
must occur exactly once in each term. Dummy in-
dices appear twice in a term, once as subscript and
once as superscript in general four vectors and ten-
sors.

Index labels are themselves not important, and
subject to rules for dummy and free indices. They
can also be arbitrarily renamed in expressions, with-
out loss of meaning.


