
Mandal et al.

Remeshing-Free Graph-based Finite Element Method for Fracture
Simulation

A. Mandal1 and P. Chaudhuri2 and S. Chaudhuri1

1 Department of Electrical Engineering, Indian Institute of Technology Bombay, India
{avirupmandal, sc}@ee.iitb.ac.in

2 Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India
{paragc}@cse.iitb.ac.in

Figure 1: Our novel fracture simulation algorithm produces the intricate fracture patterns that result from the tearing of a loaf of bread.

Abstract
Fracture produces new mesh fragments that introduce additional degrees of freedom in the system dynamics. Existing finite
element method (FEM) based solutions suffer from increasing computational cost as the system matrix size increases. We solve
this problem by presenting a graph-based FEM model for fracture simulation that is remeshing-free and easily scales to high-
resolution meshes. Our algorithm models fracture on the graph induced in a volumetric mesh with tetrahedral elements. We
relabel the edges of the graph using a computed damage variable to initialize and propagate fracture. We prove that non-linear,
hyper-elastic strain energy density is expressible entirely in terms of the edge lengths of the induced graph. This allows us to
reformulate the system dynamics for the relabeled graph without changing the size of the system dynamics matrix and thus
prevents the computational cost from blowing up. The fractured surface has to be reconstructed explicitly only for visualization
purposes. We simulate standard laboratory experiments from structural mechanics and compare the results with corresponding
real-world experiments. We fracture objects made of a variety of brittle and ductile materials, and show that our technique
offers stability and speed that is unmatched in current literature.

CCS Concepts
• Computing methodologies → Physical simulation;

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Computer Graphics Forum, https://doi.org/10.1111/cgf.14725.

1. Introduction

Fracture is a ubiquitous phenomenon in the real world. Everyday
we come across several instances of fracture, ranging from the shat-
tering of a brittle glass tumbler to the tearing of a soft loaf of bread.
To recreate such real-world phenomena, realistic dynamic frac-

COMPUTER GRAPHICS Forum.

https://orcid.org/0000-0002-2322-4440
https://orcid.org/0000-0002-1706-5703
https://orcid.org/0000-0002-1680-0016
https://doi.org/10.1111/cgf.14725

2 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

ture simulations are used frequently in computer graphics. Simulat-
ing intricate fracture patterns and crack propagation often requires
complex mathematical formulation. Incorporating both brittle and
ductile fracture in a single framework needs even more sophisti-
cated analysis. It has thus been an important research topic in both
structural mechanics and computer graphics.

However, despite intensive research over the last two decades,
the existing fracture techniques still suffer from scalability issues,
poor stability and high computational cost. E.g., as the number of
cracks grows in an object, the Finite Element Method (FEM) based
approaches proposed in [OBH02] and [OH99] require remeshing
to address the additional degrees of freedom (DOF). This poses
challenges like the generation of thin (or sliver) elements, instabil-
ity and heavy computational cost. To avoid these effects authors
have explored remeshing-free techniques like eXtended Finite Ele-
ment Method (XFEM) [KBT17] [CMSK20] and the Material Point
Method (MPM) [PKA∗05] [WDG∗19] [HFG∗18] [WFL∗19]
[WCL∗20]. The system matrix of XFEM scales linearly with the in-
troduction of new cracks, which in turn requires more computation
time. Moreover, in XFEM large volume ratios in Heaviside enrich-
ment leads to severe stability issues. On the other hand, the particle-
based material point methods have shortcomings with respect to
imposing boundary conditions, high computational cost and rigid-
ity of fragmented segments. Contrary to the discrete formulations,
peridynamics-based methods [CZZ∗18] [LBC∗15] and boundary
element methods (BEM) [HW15] [HW16] deal with solving the
integral equations of continuum mechanics, thus bypassing the dif-
ficulty of imposing boundary conditions. But solving these singu-
lar integrals in peridymanics is extremely expensive in computation
and therefore, is not suitable for low-resource applications. The use
of BEM is limited to materials with large volumes simulating only
brittle fracture.

We perform our simulations on volumetric meshes with tetrahe-
dral elements. This underlying mesh, on which all computation is
performed, is called the computational mesh. This mesh induces
a graph where its vertices become the nodes of the graph and the
edges of the mesh become the edges of the graph. The computa-
tional mesh is never remeshed. This implies that, unlike XFEM, the
number of degrees of freedom of the system does not change with
the introduction of cracks, i.e., the size of the initial system matrix
does not change. This allows our method to scale to high resolution
models with very little extra computational overhead. The mesh
that is rendered for visualization is the same as the computational
mesh initially. This mesh, however, needs to be split and the frac-
ture surfaces have to be reconstructed for rendering the fracture.
This does not affect the computational mesh.

It has been shown in earlier work that the nodal forces of a dis-
cretized hyper-elastic FEM system can be completely represented
in terms of a function of strain energy density along the edges of
the induced graph [RS15]. We use this fact and follow prior work in
structural mechanics [KRS16] to define a purely edge-based dam-
age variable, which describes the extent of the damage for any
edge in the graph. We build over prior work to reformulate the
strain energy density of damaged elements in 3D volumetric ob-
ject meshes and then simulate the independent movement of the
fractured pieces. Further in our model, we can generate and con-

trol the diffusion of cracks into the object by imposing a non-local
fracture criterion.

We demonstrate the efficacy and robustness of our method by
simulating realistic examples of both brittle and ductile fracture.
Our method’s ability to handle fracture of a variety of materials
ranging from stiff glass to squishy jello makes it useful for a wide
range of applications.

Our contributions are summarized as follows:

• We propose a novel remeshing-free, graph-based, computation-
ally efficient and robust FEM solution for fracture simulation of
3D models.

• We present a generalized version of a graph-based FEM algo-
rithm that can simulate fracture of materials with both linear and
non-linear strain energy density.

• We theoretically prove that hyper-elastic strain energy density
can be represented in closed form as a function of the length of
the edges of any object mesh.

• We extensively validate the correctness of our model against
real-world structural mechanics experiments.

• We demonstrate via examples that our method serves as a unified
FEM framework for simulating both brittle and ductile fracture.

The rest of the paper is organized as follows. We start by present-
ing a discussion of related works in Section 2. Subsequently, in
Section 3 we first describe the theoretical formulation of graph-
based FEM, and then detail the technical aspects of fracture via
crack initiation and crack propagation. We discuss the implemen-
tation details about the visualization of fractured material, collision
handling and the complete algorithm for our model in Section 4.
Next, we present results for various kinds of materials undergoing
fracture, generated using our method in Section 5. To validate our
method and check its correctness, we compare our results with real-
world benchmark fracture experiments and existing fracture simu-
lation techniques in the literature. Finally, we conclude our paper
by discussing the limitations of our work and future directions.

2. Related Work

We first delve into existing methods for mesh-based fracture sim-
ulation in computer graphics. Next, we explore meshless particle-
based fracture simulation methods. We conclude the section by re-
viewing the graph-based finite element analysis presented in mate-
rial science literature.

2.1. Mesh-based Fracture Simulation

The inception of fracture simulation in computer graphics goes
back to the seminal work on visco-elastic fracture by Terzopou-
los and Fleischer [TF88]. Early approaches propose to model
brittle fracture by removing the springs in a mass-spring system
[ADKK04] [NTB∗91] [HTK00] [HTK98] depending on a stress-
based yield threshold. But in such a system, where point masses are
connected by springs, the sudden removal of springs leads to signif-
icant visual artefacts. Moreover, visualization of the crack surface
often requires the use of a tetrahedral marching algorithm and is
therefore computationally expensive [HTK00] [HTK98]. Later,
finite element method based solutions for simulating fracture have

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 3

(a) The model just prior to fracture. (b) Strain profile just prior to fracture. (c) Model post fracture. (d) Strain profile post fracture.

Figure 2: Here we show frames from a simulation where we rip off the limbs of a jello armadillo. In the strain profiles, the red to blue colour
gradient denotes the highest to lowest strain values. The model fractures where the strain is highest prior to fracture. Post fracture, the strain
drops.

been more successful and different variations of those approaches
are still widely used. The first breakthrough in FEM-based fracture
came in the paper by O’Brien et al. [OH99]. In their work, the au-
thors present a nodal stress-based analysis for brittle fracture that
was later extended further to ductile fracture [OBH02] [MG04].
Bao et al. [BHTF07] also present a method to simulate both brit-
tle and ductile fracture. These FEM-based fracture techniques rely
on splitting the elements of a tetrahedral mesh, which satisfy the
fracture conditions and then remesh the entire fractured mesh with
the crack opening. However, these approaches suffer from various
geometric difficulties like remeshing near crack tips, generation
of degenerate elements and forming ill-conditioned basis matrices.
Subsequent FEM-based approaches employ different techniques to
alleviate these problems, such as dynamic local mesh refinement
to repair degenerate tetrahedra [WRK∗10], remeshing depending
on gradient descent flow for finer fracture resolution [CYFW14],
adaptive subdivision schemes for tetrahedral [KLB15] and trian-
gular meshes [PNdJO14] where remeshing is done around the high
stress areas to improve fracture resolution.

FEM-based solutions that work with a virtual node algorithm
(VNA) [MBF04] duplicate elements and add extra degrees of free-
dom to facilitate partial or full crack openings, instead of split-
ting the mesh elements. Later, VNA-based methods are improved
to incorporate cutting at lower than mesh resolution [SDF07] and
to robustly handle intersections passing through a node, edge or
face through an adaptive element duplication approach [WJST15].
Recently, Koschier et al. [KBT17] presented a remeshing-free ex-
tended finite element method (XFEM) based algorithm to simulate
dynamic pre-defined cuts in a 3D mesh. Like VNA, XFEM too
adds extra degrees of freedom using enrichment functions but the
advantage of XFEM over VNA is while VNA duplicates the mesh
element leading to erratic conservation of mass, XFEM splits the
initial mass of an element into fragments. Chitalu et al. [CMSK20]
expanded the pre-defined cuts to crack generation and propagation.

Contrary to processing fracture in volume elements like FEM,
boundary element methods (BEM) simulate cracks on a surface
mesh. Even though BEM found its way into graphics for simulat-
ing elastostatic deformable objects James et al. [JP99], it has been
used recently for fracture simulation. Hahn et al. [HW15] and Zhu
et al. [ZBG15] used BEM with stress intensity factors (SIFs) along
crack fronts to successfully simulate brittle fracture. Later Hahn et

al. [HW16] expanded their work to develop an algorithm for fast
approximation of BEM brittle fracture, alleviating the high compu-
tational cost for solving singular integrals. Currently, to the best of
our knowledge, there exists no work on BEM-based ductile fracture
in graphics.

Peridynamics methods solve the integral equations of contin-
uum mechanics. Unlike discrete differential-based methods e.g.,
FEM or MPM, which need to impose necessary boundary con-
ditions for simulating fracture, it is trivial to model discontinu-
ities using integral-based peridynamics. In initial work using these
ideas, authors [LBC∗15] approximate the behaviour of peridynam-
ics using mass-spring systems to simulate brittle fracture. Later
work [CZZ∗18] presents original peridynamics-based fracture al-
gorithms to simulate brittle as well as ductile fracture.

2.2. Meshless Fracture Simulation

Among the meshless methods, material point methods have gained
considerable recognition in recent years. The first major break-
through of MPM in computer graphics came through the semi-
nal work in snow simulation by Stomakhin et al. [SSC∗13]. Later
MPM found its application in simulating a wide range of materi-
als as such chocolate, lava, hybrid fluids and rubber to name a few.
Interested readers can look at [JST∗16] for a detailed overview of
different MPM methods. Most recently, MPM has shown promis-
ing results in simulating fracture due to its ability to handle ex-
treme topological change. Wu et al. [HFG∗18] propose the Com-
patible Particle-in-Cell (CPIC) algorithm, which allows the sim-
ulation of sharp discontinuities inside a material and thus simu-
lates dynamic material cutting. Later Wolper et al. [WFL∗19], in-
troduce Continuum Damage Mechanics (CDM) with a variational
energy-based formulation for crack evolution. This achieves a re-
alistic dynamic fracture simulation for isotropic materials. Further
study [WCL∗20] devoted to formulating non-local CDM to simu-
late anisotropic material fracture.

MPM methods reproduce realistic fracture phenomena but they
are not well suited to rendering sharp boundaries. They not only
have difficulty in enforcing essential boundary conditions, but they
also suffer from the disappearance of intricate crack patterns due to
excessive smoothing, high computational cost and rigidity of frag-

COMPUTER GRAPHICS Forum.

4 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

mented elements. Further, MPM methods struggle to simulate rigid
object fracture.

2.3. Graph-based Finite Element Method

While simulating fractures in the material domain, classical FEM
introduces degenerate elements due to remeshing and XFEM has
several limitations like ambiguities of crack-tip enrichment in 3D,
instabilities induced by large volume ratios in Heaviside enrich-
ments, difficulties of handling branch enrichments in 3D. More-
over, in both of these methods, computational cost increases lin-
early with an increase in the number of cracks. While BEM and
peridynamics overcome these problems by solving direct integrals,
the use of BEM is limited to materials with large volumes simulat-
ing only brittle fracture and peridymanics has a high computational
cost. Meshless methods have their limitations as described in the
previous section.

Work in finite element analysis literature by Reddy and Srini-
vasa [RS15] proposes a solution based on classical FEM to show
that for any hyper-elasticity problem, the magnitude of the nodal
forces can be written completely in terms of strain energy density
along the edges composing the elements, while force directions are
along the unit vectors corresponding to the edges. Using this idea
in subsequent work, authors [KRS16] introduce Graph-based Finite
Element Analysis (Gra-FEA) where a damage variable correspond-
ing to the edges of composing elements is used. It is based on the
strain threshold and thus can simulate the fracture of an object by
weakening the material. The advantage of using Gra-FEA is that it
requires no remeshing, while adding little computational overhead
on FEM and it still retains all the advantages of FEM. The depen-
dency of Gra-FEA on the underlying mesh structure is thoroughly
studied in another work [KRS19]. Our work introduces Gra-FEA to
the visual simulation of fracture for computer graphics. Existing lit-
erature referred to above on Gra-FEA only focuses on 2D materials
consisting of triangular elements with linear strain energy density.
We extend the idea to the 3D domain and our fracture algorithm
can handle linear as well as non-linear strain energy density. The
original Gra-FEA formulation is restricted to simulating fracture
for brittle materials. Our algorithm is capable of simulating frac-
ture for both brittle and ductile materials. We believe, to the best of
our knowledge, that this is the first work in computer graphics to
simulate the fracture of 3D brittle, as well as ductile objects, with
linear or non-linear strain energy density using graph-based FEM.

3. Governing Methods

We derive the formulation of graph-based FEM from the theory
of classical FEM, in brief. Then we delve into the details of frac-
ture generation using graph-based FEM. In our work, we always
use tetrahedral finite elements with a linear basis for domain dis-
cretization.

3.1. Classical FEM

Consider a three-dimensional domain Ω ∈ R3 that is discretized
into a mesh of ntet tetrahedra. Moreover, let N be the set of nodes
nv shared by the tetrahedral mesh elements ∆e. A displacement

Symbol Definition
F = I+∇ξu Deformation gradient
J = det(F) Relative volume change
C = FT F Right Cauchy-Green deformation tensor
IC = trace(C) First Right Cauchy-Green invariant
IIC = C : C Second Right Cauchy-Green invariant
IIIC = det(C) Third Right Cauchy-Green invariant

E =
1
2

(
FT F− I

)
Lagrangian finite strain tensor

P(F) = ∂Ψ

∂F
First Piola-Kirchhoff stress tensor

Table 1: Quantities frequently used in FEM

function, u : Ω× [0,∞)−→R3, can be defined as a mapping from
a material point ξ ∈Ω to its deformed location x ∈Ωt in the world
space. Ωt represents the world space at time t. At a certain timestep
t ∈ [0,∞), the displacement function can be represented as

u(ξ, t) = ∑
i∈N

Ni(ξ)ui(t), (1)

where Ni(ξ) is the shape function and ui is the displacement vec-
tor at the node i. For the sake of brevity of notation, we drop the
shape (ξ) and time (t) parameters for the shape and displacement
functions in further discussion.

The core idea of deformable object simulation is that when an
object mesh is deformed from its rest position, a hyper-elastic strain
energy density Ψ, develops inside it. The strain energy density pro-
duces internal elastic force fint , which in turn tries to restore the
rest shape of the mesh. Thus, the system dynamics of a deformed
object can be written in Lagrange’s form as

Mü+Hu̇+ fint = fext (2)

u =
(

uT
1 . . .uT

nv

)T
(3)

Here M and H are the mass and damping matrices of the full
system. The external and internal force vectors are represented by
fext and fint respectively.

Interested readers can look into the review pa-
pers [SB12] [KE20] for further details. In this work, we
developed our fracture simulation model based on works by Smith
et al. [SGK18], Sin et al. [SSB13] and Bargteil et al. [BWHT07].
Table 1 summarizes some of the quantities that we use frequently
in FEM simulations.

3.2. Graph-based FEM

Let the hyper-elastic strain energy density of a tetrahedral element,
∆e, be Ψ

e and fint
ei be the internal elastic force acting on the ith

node of the element. Now it can be proved [RS15] that nodal inter-
nal elastic forces of ∆e can always be decomposed along the edge
vectors connecting the nodes of ∆e. The statement can be mathe-

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 5

Figure 3: Fracture of an armadillo model made of solid blue jade (top row) and porcelain shell (bottom row).

Figure 4: Fracture of a bunny model made of solid glass (top row) and a porcelain shell (bottom row).

matically formulated as

fint
ei =Ve

∂Ψ
e

∂re
i
= 2Ve

ne

∑
j=1
j ̸=i

∂Ψ
e

∂

(
de

i j

)2 de
i jd̂

e
i j (4)

where re
i is the world position vector for node i of element ∆e. The

parameter de
i j = ||re

i −re
j|| denotes the distance between the ith and

jth nodes of ∆e and d̂e
i j is unit vector along de

i j . Moreover, Ve and ne
represent the volume and the number of nodes of ∆e respectively. In
Equation 4 we can get to the rightmost term from the middle term
by a few algebraic manipulations. We first take derivatives with
respect to squared edge lengths and then apply a chain rule. Please
check the supplemental document for a more detailed derivation.
It can be seen from Equation 4 that the magnitude of the nodal
internal elastic forces depends only on the derivative of the strain
energy density of the element while the force directions are along
its edges.

Figure 5 shows two tetrahedral elements, ∆eABDC and ∆eBEDC,
which share a common face. These can be thought of as being
a part of a larger object mesh. We assume that the overall mesh
is deformed and each node in the mesh develops internal elastic
force. Now according to Equation 4, internal elastic force on the

A
C

D

B E

Figure 5: Nodal force distribution along the edges for graph-based
FEM.

node B for ∆eABDC can be written along the edges of ∆eABDC
as fB

∆eABDC = fBC
∆eABDC + fBA

∆eABDC + fBD
∆eABDC (shown as dotted blue

lines). Similarly, internal elastic force on the node B for ∆eBEDC
can be written along the edges of ∆eBEDC as fB

∆eBEDC = fBC
∆eBEDC +

fBD
∆eBEDC + fBE

∆eBEDC (shown as dotted green lines). The distribution
of nodal internal elastic forces for the entire mesh can be computed
similarly.

COMPUTER GRAPHICS Forum.

6 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

However, for Equation 4 to hold, we need to show that hyper-
elastic strain energy density Ψ

e can be completely represented us-
ing just de

i j . We prove this in the next section.

3.3. Proof for Edge Length Dependence of Strain Energy
Density

Along with the Right Cauchy-Green deformation tensor C and the
three invariants IC, IIC and IIIC, as defined in Table 1, let us intro-
duce two more well-known anisotropic invariants [WMG96]

IVC = aT Cb

VC = aT CT Cb
(5)

where a, b are constant anisotropic fiber directions and they may
or may not be equal to each other. Hyper-elastic energy density can
generally be represented using a subset of these five invariants as
Ψ

e = f (IC, IIC, IIIC, IVC,VC). Therefore, in order to show that the
hyper-elastic strain energy density can be expressed as a function
of the length of edges of a mesh, it is sufficient to show that every
element of the set of invariants can be expressed in closed form
using only the length of the edges of the mesh in a graph-based
FEM setting.
Theorem 3.1. Every element of the set of invariants
IV = {IC, IIC, IIIC, IVC,VC} can be expressed in closed form using
only the length of the edges of a mesh used in FEM.

We present the complete proof of the theorem in the supplemen-
tal document.

3.4. Fracture with Graph-based FEM

In this section, we present our model for edge-based fracture de-
rived from Graph-based FEM. We take advantage of the fact that
the stress of an element is always a function of hyper-elastic strain
energy density. We can find normal stress in the direction of the
edges of a tetrahedral element by using a suitable transformation.
Next, depending on the state of the edge i.e., broken or unbroken,
we manipulate the normal stress along the edges to degrade the
strain energy density for a damaged element. Finally, using this up-
dated strain energy density, we recalculate the elastic forces and
tangent stiffness matrix for fracture simulation.

Using chain rule of differentiation and deformation gradient
from Table 1, we can rewrite the Equation 4 as

fint
ei = 2Ve

ne

∑
j=1
j ̸=i

3

∑
k=1

3

∑
l=1

 ∂Ψ
e

∂ [F]kl

∂ [F]kl

∂

(
de

i j

)2

de
i jd̂

e
i j (6)

where
∂Ψ

e

∂ [F]kl
are components of first Piola-Kirchhoff stress tensor

of ∆e (see Table 1). Thus, the edge-based elastic forces can be
completely represented as a function of stress in ∆e. This stress
in turn depends on the derivative of element strain energy density,
Ψ

e w.r.t. the deformation gradient F. Therefore, by manipulating
the stress components properly we can change the internal elastic
forces and in turn simulate the fracture of an element.

Let the rectangular Cartesian components of the Piola-Kirchhoff
stress tensor, σ

e
c, be denoted as

σ
e
c =

[
σ

e
xx σ

e
yy σ

e
zz σ

e
xy σ

e
xz σ

e
yz
]

(7)

The set of normal stress along the edges is represented as

σ
e
d =

[
σ

e
12 σ

e
13 σ

e
14 σ

e
23 σ

e
24 σ

e
34
]

(8)

where σ
e
i j represents the normal stress along the edge formed by

nodes i and j, in Equation 8. Then the transformation of Cartesian
stress to normal stress in the direction of an edge can be formulated
as below [RS15] [KRS16]

σ
e
i j = σ

e
xx cos2

φx +σ
e
yy cos2

φy +σ
e
zz cos2

φz

+σ
e
xy cosφx cosφy +σ

e
xz cosφx cosφz +σ

e
yz cosφy cosφz

(9)

Assuming that d̂e
i j, x̂, ŷ and ẑ denote unit vectors along the edge

formed by nodes i and j of the tetrahedral element ∆e, x-axis, y-
axis and z-axis respectively, the following relations hold true

cosφx = d̂e
i j · x̂, cosφy = d̂e

i j · ŷ, cosφz = d̂e
i j · ẑ (10)

Using Equation 9, we can write the final relation between two sets
of stresses as

[
σ

e
12 σ

e
13 σ

e
14 σ

e
23 σ

e
24 σ

e
34
]T

= T
[
σ

e
xx σ

e
yy σ

e
zz σ

e
xy σ

e
xz σ

e
yz
]T

(11)

where, for convenience of notation, if we denote cosφ as γφ, then

T =



γ2
φ12

x
γ2

φ12
y

γ2
φ12

z
γ

φ12
x

γ
φ12

y
γ

φ12
x

γ
φ12

z
γ

φ12
y

γ
φ12

z

γ2
φ13

x
γ2

φ13
y

γ2
φ13

z
γ

φ13
x

γ
φ13

y
γ

φ13
x

γ
φ13

z
γ

φ13
y

γ
φ13

z

γ2
φ14

x
γ2

φ14
y

γ2
φ14

z
γ

φ14
x

γ
φ14

y
γ

φ14
x

γ
φ14

z
γ

φ14
y

γ
φ14

z

γ2
φ23

x
γ2

φ23
y

γ2
φ23

z
γ

φ23
x

γ
φ23

y
γ

φ23
x

γ
φ23

z
γ

φ23
y

γ
φ23

z

γ2
φ24

x
γ2

φ24
y

γ2
φ24

z
γ

φ24
x

γ
φ24

y
γ

φ24
x

γ
φ24

z
γ

φ24
y

γ
φ24

z

γ2
φ34

x
γ2

φ34
y

γ2
φ34

z
γ

φ34
x

γ
φ34

y
γ

φ34
x

γ
φ34

z
γ

φ34
y

γ
φ34

z


(12)

The matrix T is calculated at every timestep and it is invertible for
non-degenerate tetrahedral elements, i.e., elements with non-zero
volume.

The criteria for fracture in graph-based FEM is that if the
weighted average of normal stress along the direction of any edge
exceeds the critical stress threshold σ

e
thres, a crack is to be formed

on that edge. First, we explain the method to calculate the weighted
average of normal stress. Let rcen be the position of the centroid of
any tetrahedron of interest, ∆cen, in the mesh at a particular time
step t′ during simulation. The weighted average of normal stress
for ∆cen can then be calculated as

σ
e
cen = ∑

||r−rcen||≤Rd

ω(r− rcen)σ
e
c(r) (13)

where ω is a weight kernel centered at rcen and Rd is support of
the kernel. In our current implementation, we use a simple linear
average kernel for ω for easier calculation. Other kernels e.g., a
Gaussian kernel, can also be used. The exact diffusion fracture pat-
tern (explained in the next paragraph) will be different for different
kernels. Vector r and tensor σ

e
c(r) respectively refer to the position

of centroid and PK1 stress tensor of any tetrahedron residing inside
the kernel support Rd , at the same time step t′.

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 7

Figure 6: Effect of kernel size Rd on fracture. We show the tearing
of a PVC doormat (top) with different sizes of kernel support (Rd =
0 in middle, Rd = 5 at the bottom). As the size of kernel support
increases, the cracks become more diffused over the object mesh.

Using Equations 11 and 13 the fracture criteria can, therefore,
be defined as [KRS19]

σ
e∗
i j =

[
T
[
σ

e
cen

]T
]

i j
≥ σ

e
thres (14)

where σ
e∗
i j is a component of the weighted average of normal stress

along the edge formed by nodes i and j. As the support of kernel,
Rd , increases, the cracks become more diffused i.e., they spread
more inside the object [KRS19]. For Rd = 0, the fracture crite-
rion depends only on the stress value of the tetrahedron of interest,
∆cen, resembling a local fracture. The effect of kernel size Rd on
fracture is shown in Figure 6. The top image shows an undamaged
doormat model. In the middle and bottom images, the doormat has
been torn apart by applying the same force at the free left end. As
evident from the figure, in the middle image, where Rd = 0, the
fracture is localized in a nearly horizontal tear at one place. On the
contrary, in the image at the bottom, where Rd = 5, the cracks have
been propagated over the entire body of the doormat, in a diffused
pattern.

1

3

2

4

5
6

7

8

Figure 7: Fractured edges shared multiple elements.

Now for each edge of the mesh, we maintain a binary damage

variable, ζ ∈ {0,1}. A value of ζ = 0 corresponds to an unbroken
edge, while ζ = 1 implies a crack is formed on the edge.

ζ =

{
0 if σ

e∗
i j < σthres

1 if σ
e∗
i j ≥ σthres

(15)

The number of broken edges in a tetrahedral element may vary
from zero to six. Once an edge is broken, it will not get repaired
in subsequent iterations and all the tetrahedra that share the broken
edge will be considered damaged. As an example, a shared edge
fracture is depicted in Figure 7, using a simplified, two-dimensional
example. Two edges in the mesh, coloured red, are broken. These
broken edges are shared by triangles 1 (two edges), 2 (one edge)
and 3 (one edge). In the subsequent iterations, all three triangular
elements will be considered damaged with varying degrees of dam-
age. Whenever an edge, ebr, gets broken, the corresponding normal
stress of that edge becomes zero for all elements sharing that edge.
Using Equations 11 and 15, we can write[

σ
e
12 f rac

σ
e
13 f rac

σ
e
14 f rac

σ
e
23 f rac

σ
e
24 f rac

σ
e
34 f rac

]T

= diag
[
ζ12 ζ13 ζ14 ζ23 ζ24 ζ34

]
[
σ

e
12 σ

e
13 σ

e
14 σ

e
23 σ

e
24 σ

e
34
]T ∀ebr ∈ ∆e

(16)

where ζi j and σ
e
i j f rac are damage variable and stress after fracture

along the edge formed by nodes i and j. In matrix form Equation 16
is written as [

σ
e
d f rac

]T
= ζ

[
σ

e
d
]T

= ζT
[
σ

e
c
]T (17)

where T is transformation matrix from Equation 12. Projecting
back to Cartesian space, rectangular Cartesian components, σ

e
c f rac

of the damaged Piola-Kirchhoff stress tensor can be written as[
σ

e
c f rac

]T
= T−1

[
σ

e
d f rac

]T
= T−1

ζT
[
σ

e
c
]T (18)

Graph-based FEM may seem similar to mass-spring systems and
peridynamics, but it has a few key differences as explained in the
supplemental document.

3.5. Fractured Strain Energy Density: Linear Elasticity

In graph-based FEM, instead of remeshing the initial mesh, we up-
date the system equation of fractured mesh using a reformulation
of elastic energy density to simulate fracture. In this section, we
present the detailed derivation of hyper-elastic strain energy den-
sity for graph-based FEM in the case of linear elasticity problems.
First, we derive it for undamaged condition. The expression for the
damaged condition is a simple extension of that.

3.5.1. Undamaged Condition

In linear elasticity, the strain energy density for a tetrahedral ele-
ment, ∆e, the nodal internal force vector fint

e of volume Ve can be
written in terms of edge lengths as

fint
e =Veσ

e
cAT

2 AT
1 =Veσ

e
cB =Veε

e
cEB (19)

COMPUTER GRAPHICS Forum.

8 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

where A1 =

[
∂led
∂ue

]T

, A2 =

[
∂ε

e
c

∂led

]T

and BT =A1A2. Linear stress,

σ
e
c and linear Cartesian strain, ε

e
c are given by σ

e
c = ε

e
cE and ε

e
c =

1/2(F+FT)− I. The parameter led denotes the edge length vector.

Similarly, we can formulate the tangent stiffness matrix in the
graph-based FEM paradigm as below.

ke =
∂fint

e
∂ue

=VeA1A2EAT
2 AT

1 =VeBT EB (20)

More detailed derivations are given in the supplemental docu-
ment.

3.5.2. Damaged Condition

Following the same line of arguments as presented in Equation 19
and Equation 20, the internal force and tangent stiffness matrix for
fractured elements can be represented as

fint
e f rac =Veε

e
cTT

ζT−T ET−1
ζTB (21)

ke f rac =VeBT TT
ζT−T ET−1

ζTB (22)

More details are available in the supplemental document.

3.6. Fractured Strain Energy Density: Non-linear Elasticity

Non-linear elasticity demands a different reformulation of the elas-
tic energy density. In this section, we present two different ap-
proaches for this reformulation that work in the case of non-linear
elasticity. There are also some approaches we tried that did not pro-
duce the correct result. These are instructive for understanding and
are presented in the supplemental document for completeness.

3.6.1. First Approach — Linearization

Our first approach is based on the linearization of non-linear strain
energy density. We reparameterize the material parameters µ and λ

to reproduce the stress tensor, σ
e
c, of linear elasticity according to

Hooke’s law.

σ
e
c = 2µLaméε

e
c +λLamétrace

(
ε

e
c
)

I (23)

where coefficients µLamé and λLamé are Lamé parameters in lin-
ear elasticity. The parameter ε

e
c = 1/2(F+FT)− I is linear strain.

Given Young modulus (Y) and Poisson’s ratio (ν), Lamé parame-
ters can be defined as

µLamé =
Y

2(1+ν)

λLamé =
Yν

(1+ν)(1−2ν)

(24)

For Neo-Hookean energy density [SGK18] in Equation 25, if we
set µ = 4/3µLamé and λ = λLamé + 5/6µLamé, it becomes consis-
tent [SGK18] with Equation 23. With these linearized stress and
strain values, we can rewrite the linearized Neo-Hookean energy
density expression and follow the same line of arguments as pre-
sented earlier for fracture simulation.

Ψneo =
µ
2
(IC−3)+

λ

2
(J−α)2− µ

2
log(IC +1) (25)

where α = 1+
µ
λ
− µ

4λ
.

Similarly for Saint–Venant Kirchhoff energy density given in
Equation 26, linearization [KTY09] can be done by putting µ =
µLamé and λ= λLamé. We have simulated fracture using this method
on Saint–Venant Kirchhoff energy density in Figure 8.

Ψstvk =
λ

8
(IC−3)2 +

µ
4
(IIC−2IC +3) (26)

Figure 8: Linearization of strain energy density for fracture simu-
lation on a 2D bar (1st row). The corresponding strain profiles are
shown in 2nd(σx), 3rd(σxy) and 4th(σy) row respectively.

The derivations for the linearization of these strain energies are
given in the supplemental document.

The main advantage of using this formulation is that even if an
element gets fractured into two or more disjoint fragments, the
residual force continues working on the remaining intact edges.
However, for linearization operation, we assume infinitesimal lin-
earized strain tensor ε = 1/2(F + FT)− I instead of Lagrangian
finite strain tensor (see Table 1). As higher order terms of the strain
tensor are ignored for linearization, it can not capture large defor-
mations without introducing significant artefacts. Thus, compared
to non-linear models which use Lagrangian finite strain tensor, it
produces more deformation artefacts.

3.6.2. Second Approach — Monotonic Degradation

Our second approach is based on the monotonic degra-
dation of non-linear strain energy density. It is common
in fracture simulation to degrade the energy density by
a monotonic degradation function to allow material separa-
tion [AMM09] [MSU15] [WFL∗19]. Thus, using Equation 8 and
Equation 16 the hyper-elastic strain energy density for fractured el-
ements can be defined as

Ψ
e
f rac = χ

e
(

σ
e
d f rac

,σe
d

)
Ψ

e (27)

The monotonic function χ
e
(

σ
e
d f rac

,σe
d

)
signifies the fractured

hyper-elastic strain energy density as a fraction of original one de-

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 9

pending on the number of damaged edges.

χ
e
(

σ
e
d f rac

,σe
d

)
=

4
∑

i, j=1
i< j

|σe
i j f rac
|

4
∑

i, j=1
i< j

|σe
i j|

(28)

where i and j denote nodes of the tetrahedral mesh element, ∆e.
Further, this updated hyper-elastic strain energy density is used
to calculate internal force and tangent stiffness matrix for frac-
tured elements. We have simulated fracture using this method on
Saint–Venant Kirchhoff energy density in Figure 9.

Figure 9: Degradation of hyper-elastic strain energy density for
fracture simulation on a 2D bar (1st row). The corresponding strain
profiles are shown in 2nd(σx), 3rd(σxy) and 4th(σy) row respec-
tively.

The main advantage of this method is that we can use Lagrangian
finite strain tensor for non-linear elasticity. Thus using this ap-
proach, large deformations can be better simulated without any
artefacts contrary to the earlier linearization method. However, in
this approach, we assign zero value to the fractured hyper-elastic
strain energy density i.e. Ψ

e
f rac = 0, in Equation 27 when an ele-

ment fractures into two or more disjoint fragments. Thus, in this
case, when an element produces two or more disjoint segments,
no residual force remains in the intact edges. This is a drawback
compared to the previous linearization model where residual force
continues working on the remaining intact edges even for disjoint
fragments. However, any edge in an object mesh is shared by mul-
tiple elements all of which may not be fully damaged. The internal
forces from these undamaged elements continue to work on those
intact edges and thus, keep the nodes of the undamaged edges to-
gether for a fully split tetrahedron.

From Figure 8 and Figure 9, we can see that there is no signifi-
cant change in the visual output of the fracture simulation regard-
less of the reformulation method used. Moreover, irrespective of
methods used for updating strain energy density after fracture, both
of these approaches use the rich discrete differential geometric ap-
proach [Sri21] of graph-based FEM to simulate fracture. From the

discussion of the two approaches, we can conclude that if our main
objective is to simulate large deformation-based fracture, we should
use the second approach. On the other hand, if our goal is to accu-
rately capture the residual stress after fracture for some engineering
applications, then the first approach should be preferred.

3.7. Plasticity

We follow the multiplicative plasticity model [BWHT07] for our
work. In this model, the deformation gradient is split into an elastic
and a plastic part

F = FeFp (29)

where forcing det(Fp) = 1, the volume of the element is preserved.
Starting from an initial identity matrix, Fp is updated as follows

Fp←− Fp ·V
(

det(Σ)−
1
3 Σ

)β

VT (30)

where UΣVT is SVD of Fe. The exponent β is an function of cur-
rent stress (σe), yield stress (σe

thres), flow rate (ν) and hardening
parameter (δ,K)

β = clamp
{

ν(||σe||2−σ
e
thres−Kδ)

||σe||2
,0 . . .1

}
(31)

where ν and K are user-defined parameters. The term Kδ de-
termines the work hardening or softening. The term δ is initial-
ized with value zero and incremented in each time step by δ←−
δ+∆t||σe||2.

4. Implementation

Next, We present details of how we create visualizations of the
fracture simulation. Following that, we discuss collision detection
for fractured pieces. Then we present a complete algorithm for our
model of fracture simulation.

(a) (b) (c)

Fracture Fracture Fracture

Figure 10: (a) Original mesh with a fracture, (b) Computational
mesh (Mc), with damaged edges marked in blue, on which system
dynamics get evaluated, (c) Mesh for visualization (Mv) is split
and the fracture surface is reconstructed.

4.1. Surface Remeshing for Visualization

Our FEM computations are performed on the graph induced by the
computational mesh,Mc, that is never remeshed. However, to vi-
sualize the fracture we need to split the mesh used for visualiza-
tion. For that purpose, a separate visualization surface mesh,Mv,
is maintained in addition toMc and is the same as the outer sur-
face of volumetric mesh initially. We clarify this distinction be-
tween the Mc and Mv meshes using a simple 2D example. Fig-
ure 10b depicts that when a fracture occurs, the system dynamics is

COMPUTER GRAPHICS Forum.

10 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

PE1

PE2

SE1
SE2

PF1

PF2 PF3

PE1

SE1SE2

PE2

SF1

SF2 SF3

PF1

PF2 PF3

SF1

SF2 SF3

PT1

PT2

PT3

PT4

PT1

PT2

PT3 PT4

ST1

ST2

ST3

ST4

(a) (b) (c)

Figure 11: Splitting of edge (left), face (middle) and tetrahedron (right) for visualization of fracture.

evaluated onMc with weakened elements. When we need to ren-
der the fractured elements, we split theMv mesh that is used for
visualization, as shown in Figure 10c and reconstruct the fracture
surface. Remeshing ofMv does not affectMc. Moreover, the re-
construction of the fracture surface for visualization adds very little
computational overhead to the overall simulation cost. We have al-
ready explained how the system dynamics is computed onMc in
the presence of a fracture.

We now explain the details of how we split Mv for rendering.
We use a node-associated four-split configuration of a tetrahedron,
as shown in Figure 11c, for fracture visualization. When a tetra-
hedral element splits, the corresponding edges and faces of the el-
ement split too. We explore two different split strategies, as ex-
plained at the end of this section.

When normal stress along an edge, PE1PE2 (Figure 11a),
crosses the critical threshold, it splits into two segments PE1SE1
and PE2SE2. PE1 and PE2 are original nodes in the mesh. Let us
call them parent nodes. The other two newly generated nodes, SE1
and SE2, are child nodes to PE1 and PE2, respectively. The child
nodes do not contribute to the system dynamics but rather follow
the movements of their parent nodes. Similarly, when a face gets
fractured into three segments (Figure 11b), three child nodes, SF1,
SF2 and SF3 are assigned to their corresponding parent nodes, PF1,
PF2 and PF3. Similarly four child nodes, ST1, ST2, ST3 and ST4
(Figure 11c) are assigned to four parent nodes PT1, PT2, PT3
and PT4 for a damaged tetrahedron. It is important to note that
a triangular face or tetrahedron may not split into all three or four
segments during the simulation. For example, with reference to Fig-
ure 11b, if we assume that only both the segments containing node
PF1 get damaged i.e., edge PF2PF3 remain undamaged, then in
such a case, child node SF1 follows the movement of parent node
PF1 but child node SF2 and child node SF3 follow the average
movement of parent nodes PF2 and PF3. When similar scenarios,
although more complex, arise for a tetrahedron, we apply the same
principle. All possible cases of different kinds of fractures are taken
into account in our simulation.

In this work, we split edges, faces and tetrahedra with respect to
their centroids. Furthermore, we also examined how the visualiza-
tion output gets affected if an edge is split at a different position
instead of in the middle. For this purpose, we split the edge such
that the lengths of the sections are in inverse proportion to the ra-
tio of its nodal forces. In Figure 12, in the left column, we render

fracture on the bread model where all edges are split in the middle.
In the right column, the same simulation is repeated with exact pa-
rameters and the edges are split in inverse proportion to the ratio of
their corresponding nodal forces. As evident from the figure, there
is no significant difference in the simulation outputs. We observed
that both simulations require equivalent computation time.

4.2. Collision Detection

After the fracture, disjoint vertices have no internal elastic
force acting on them. But external body forces e.g., grav-
ity or impulse force, continue to be applied on all the ver-
tices whether disjoint or not. So we need no special treat-
ment for collision detection. Continuous Collision Detection
(CCD) [TMT10] [TMOT12] [WFS∗20] is performed betweenMv
and the collider mesh (see Figure 3, 4). For fractured pieces
colliding with the floor, we use Discrete Collision Detection
(DCD) [ESHD05] routine (see Figure 4). When the visualization
mesh, Mv, collides with another object mesh, we first calculate
the impulse forces for each of them using the principles of CCD
and DCD. Now, as shown in Figure 11c, each fractured segment of
a tetrahedron has exactly one parent node. For each fractured seg-
ment, we accumulate all the impulse collision forces corresponding
to that particular segment and apply the accumulated force to the
parent node associated with the segment. However, as discussed in
the previous section, for a partially fractured tetrahedron, there will
be disjoint segments which contain more than one parent node. In
that case, the accumulated force is equally distributed among all the
parent nodes present in the fractured segments. Thus even though
the visualization mesh, Mv, accurately detects the collisions, the
effects of the collisions are handled by the computational mesh,
Mc. Currently, we do not handle self-collision between the frac-
tured pieces.

4.3. Algorithm

The full algorithm of our method is presented in Algorithm 1.
We implement our model using the open-source Vega FEM li-
brary [SSB13]. In the implementation of this algorithm, for solv-
ing the system dynamics we use an implicit backward Euler in-
tegrator with a conjugate gradient solver [SSB13]. All the sim-
ulations are performed on an Intel Core i7-9750H CPU with
12 threads at 2.60 GHz. For visualization, the simulation results
are raytraced in Houdini. Apart from the models obtained from

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 11

Figure 12: The left column displays fracture where an edge is split in middle. The right column displays fracture where an edge is split in the
ratio of the forces on its nodes. The fractured areas in each image are zoomed up in the inset for better visualization.

Algorithm 1: Remeshing-Free Graph-based Fracture

Initialize FEM simulation;
Let nv be total no of vertices ofMc;
Let [x]nv×1 be initial position vector;
while True do

for Each element inMc do
Calculate stress along the edges σ

e
i j [as per Eq. 9];

if σ
e
i j > σthres then
Fracture the edge [as per Eq. 14];
Update strain energy density Ψ

e [as explained
in Sec. 3.5 & Sec. 3.6];

Update internal force fint
e ;

Update stiffness matrix ke;
Remesh theMv for visualization [as explained

in Sec. 4.1];
end
Resolve all collisions withMv [as explained in

Sec. 4.2] ;
Calculate impulse force due to collision;
Add all external forces to the vertices ofMc;

end
Build full system [M]nv×nv

[v]nv×1 = [f]nv×1;
Solve for velocity vector [v]nv×1;
for Each vertex inMc andMv do

Update position vector by [x]nv×1+= ∆t · [v]nv×1;
end

end

the Stanford 3D scanning repository, the other 3D models used
in this project are obtained from free3d.com, sketchfab.com, tur-
bosquid.com, cgtrader.com and lifesciencedb.jp. Open-source soft-
ware TetWild [HZG∗18] and TetGen [Si15] are used to generate
the volumetric simulation meshes.

5. Results

We present multiple visualizations of fracture simulation for a va-
riety of materials to demonstrate the robustness of our method and
the diversity it can handle. We present dynamic fracture simulation
results which mimic real-world events like tearing a loaf of bread,
collision of hard objects with solid jade models and objects made
of porcelain shells. We also show the effect of applying tensile or

Figure 13: Our method produces the intricate fracture patterns that
result from the tearing of a loaf of bread. We show rendered frames
from the simulation (to be seen left to right, top to bottom). The
loaf model has around 620k tetrahedra.

impact forces to rubber-like and jello-like materials. Following that
we discuss the effects of mesh resolution on both visualization and
computational mesh during fracture simulation.

Next, we experimentally validate our model by recreating bench-
mark fracture experiments in simulation that are commonly per-
formed in a structural mechanics laboratory, with our framework
and compare the results with expected results from similar experi-
ments performed in the real world. These experimental simulations
are complete dynamics simulations that demonstrate the accuracy
of our method. Finally, we compare our method with existing re-
lated works.

Mesh resolution and timing results for the simulations are re-
ported in Table 2. The timestep for all our simulations is 5.0e−03.

5.1. Dynamic Simulations

In a complete dynamic simulation, we take into account the effects
of external forces and solve full system dynamics as presented in
Equation 2 with mass & damping matrix regularizers. We use Neo-
Hookean energy with monotonic degradation for ductile fracture
simulation as it is better at preserving large deformation. StVK en-
ergy with linearization is used for brittle fracture simulation as brit-
tle materials show very little deformation.

COMPUTER GRAPHICS Forum.

12 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

Simulation # Tetrahedra sec/frame ρ (kg/m3) Y (Pa) ν Rd σth (Pa) σp (Pa)
Loaf (Fig. 1) 620.6k 4.38 1.0e+03 1.0e+07 0.35 1.0 4.0e+06 1.0e+06
PVC doormat (Fig. 6) 234.4k 1.62 1.0e+03 1.0e+08 0.45 0.0 & 5.0 2.5e+06 1.5e+05
Jello armadillo (Fig. 2) 159.1k 1.09 1.0e+03 1.0e+06 0.3 2.0 1.5e+05 5e+03
Solid jade armadillo (Fig. 3) 4.7k 0.04 1.0e+03 1.0e+10 0.4 0.0 5.0e+07 -
Porcelain shell armadillo (Fig. 3) 41.1k 0.33 1.0e+03 1.0e+10 0.4 0.0 5.0e+07 -
Solid glass bunny (Fig. 4) 23.7k 0.18 1.0e+03 1.0e+10 0.45 0.0 5.0e+07 -
Porcelain shell bunny (Fig. 4) 38.8k 0.29 1.0e+03 1.0e+10 0.45 0.0 5.0e+07 -
Granite cylinder (Fig. 21) 45.8k 0.39 2.75e+03 4.5e+10 0.33 0.0 9.56e+06 -
A516 Gr.70 steel bar (Fig. 17, 19)

Brittle at temperature −40◦C 27.8k 0.24 7.7e+03 2.2e+11 0.28 0.0 6.55e+08 -
NVE 36 steel bar (Fig. 17, 19)

Ductile at temperature 23◦C 27.8k 0.24 7.7e+03 1.9e+11 0.28 0.0 5.4e+08 8.3e+07

Table 2: Simulation parameter table. Parameters ρ, Y, ν and Rd (Equation 13) denote density, Young modulus, Poisson’s ratio and support of
the kernel for crack diffusion. Parameters σth and σp denote yield and plasticity threshold.

5.1.1. Ductile Fracture

We illustrate the highly detailed and intricate fracture effects pro-
duced by tearing a loaf of bread in Figure 1 and Figure 13. It is
evident from these figures that our simulation model can model
complex fracture patterns and can easily scale to high resolution
meshes. In Figure 2 we simulate the limbs of a jello armadillo be-
ing ripped off. Here we also visualize the corresponding strain pro-
files. In the frame shown on the leftmost side, the armadillo appears
just prior to the fracture. Thus, it has the highest strain on elements
that are going to be damaged (coloured red). Once damage sets in
post-fracture, as shown on the right, the strain decreases again. The
disconnected nodes in the damaged mesh have very low strain val-
ues and thus appear in blue-green. In Figure 6, we show the tearing
of a doormat with different sizes of kernel support, Rd , thus pro-
ducing localized (middle) and diffused (bottom) fracture.

5.1.2. Brittle Fracture

For brittle fracture simulation, over our regular graph-based FEM,
we have used a stress-based fracture surface initiation and prop-
agation algorithm similar to [KLB15] [GMD13]. Similar to those
works, first we identify a few regions containing the highest amount
of stress and then initiate a single fracture surface from each of
these regions. Each of these fracture surfaces propagates to the
boundary of the object. We first calculate the intersections of a frac-
ture surface with the edges of our FEM mesh and then mark these
edges as damaged with the embedded intersection points. Finally,
the graph-based FEM is used to simulate the fractured object.

In the top row of Figure 3, a hammer hits an armadillo made of
solid blue jade to generate large chunks of debris from the fracture.
In the bottom row of the same figure, a hammer smashes a porcelain
shell model of an armadillo.

Using our fracture simulation method, in the top row of Figure 4
we render the fracture of a solid glass model of a bunny when it is
hit by a hammer. The fracture of a shell model of a bunny made of
porcelain is simulated in the bottom row of the same figure.

5.2. Effect of Mesh Resolution

We show the effect of mesh resolution on the fracture simulation
in Figure 14. In the figure, the computational mesh resolution is in-
creased from top to bottom with topmost, middle and bottom-most
models consisting of 1.5k, 38k and 620k tetrahedra respectively.
As evident from the figure, with the increase of mesh resolution,
finer and more intricate details of the fracture can be captured. The
simulation times required are 0.013 sec/frame, 0.31 sec/frame and
4.38 sec/frame respectively from lowest to highest resolution mesh.

Figure 14: Computational mesh resolution is increased from top to
bottom.

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 13

5.3. Debris control

We can control the amount of debris produced due to fracture
by tuning different parameters. In Figure 15, a bread fracture are
shown with varying amount of debris. The parameters that we have
tuned in this example to produce less debris are plasticity and frac-
ture threshold. The image on the left has plasticity and fracture
threshold 2.5e+ 06 Pa and 3.0e+ 06 Pa respectively. On the con-
trary, the plasticity and fracture threshold for the image on right is
1.0e+06 Pa and 4.0e+06 Pa respectively.

Figure 15: Fracture simulation with varying amount of debris. The
left column shows more debris while the right column shows less
amount of debris.

Figure 16: Fracture simulation with increasing (left to right)
amount of debris.

For brittle fracture, as discussed earlier, first we pick out a few
regions containing the highest amount of stress and then initiate a
single fracture surface from each of these regions. Now, if more
number of high stress regions are picked out, the amount of debris
also increases. In Figure 16, the amount of debris for the brittle
fracture of a porcelain bunny shell is depicted. In the figure, we
choose 50 high stress regions for the leftmost image, 150 high stress
regions for the middle image and 300 high stress regions for the
rightmost image. It can be seen in the figure that the amount of
debris increases from left to right with the increasing number of
high stress regions. The user can easily change this parameter to
control debris.

5.4. Experimental Validation

To evaluate and validate how faithfully real-world fracture can be
simulated using our method, we present a qualitative and quantita-
tive comparison with three benchmark laboratory fracture experi-
ments. These are the Charpy impact test, the Izod impact test and
the Brazilian test.

5.4.1. Charpy Impact Test

In this test, we use a steel specimen of dimension 10mm×10mm×
55mm with a 45◦ ‘V’ shaped groove in the middle of it (see the
left image of Figure 17). A pendulum of known mass and length
then impacts the back of the groove with both ends of the specimen
held against fixed beams. Now depending on the tensile strength
and plasticity threshold of the material, the specimen breaks fully

Figure 17: Charpy Impact Test: The left image shows the config-
uration of the Charpy test. In the middle image, a specimen with a
higher plasticity threshold splits into two, while on the right a spec-
imen with a low plasticity threshold only bends and gets partially
damaged.

Figure 18: The plot shows the load-displacement curves of our sim-
ulated Charpy impact test. The simulated curves are compared with
ground truth curves from actual laboratory experiments.

into two pieces or is partially damaged and bends in a three-point
configuration. We simulate this experiment using our method, on
specimens made of two different kinds of steel with different ten-
sile strengths (the name of the steel is mentioned in Table 2). In-
stead of the entire swinging pendulum, as present in the real Charpy
test setup, we simulate an impact with a fast-moving block (as can
be seen in the image) that hits the specimen at the same location
where the specimen is supposed to be hit in the real test. As shown
in Figure 17 the steel with a higher plasticity threshold (middle im-
age) breaks into two pieces while the other one (right image) splits
partially and bends. Simulation material parameters used in this ex-
periment are obtained from [TML02].

5.4.2. Izod Impact Test

The Izod impact test specimen is shown in the left image of Fig-
ure 19. Here the specimen is held in a cantilever beam configuration
with one end fixed and the pendulum hits it on the other end. The
results of the Izod test performed on the same materials as before
are shown in the middle and right images of the figure.

In Figure 18 and Figure 20 we plot the load-displacement
curves for the Charpy and Izod tests respectively as obtained from
our simulated experiments. The solid blue curve denotes simulated
brittle fracture, which splits sharply beyond a load threshold. The

COMPUTER GRAPHICS Forum.

14 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

Figure 19: Izod Impact Test: The left image shows the configura-
tion of the Izod test. In the middle image, a specimen with a higher
plasticity threshold splits into two, while on the right a specimen
with a low plasticity threshold only bends and gets partially dam-
aged.

Figure 20: The plot shows the load-displacement curves of our sim-
ulated Izod impact test. The simulated curves are compared with
ground truth curves from actual laboratory experiments.

solid red curve which denotes simulated ductile fracture indicates
a plastic flow in the material. The brittle and ductile fracture curves
for both tests closely resemble the ground truth reference force-
displacement curves shown in the same figure with dotted lines.
The ground truth reference curves are reproduced from the same
experiments reported in [TML02]. The reference data for ductile
fracture is obtained from Figure 10 in [TML02]. In this figure, both
the force/load and load-line displacement are plotted against the
time axis. However, in our plots, we depicted the force/load curve
against the load-line displacement. Because in standard practice,
the ductility and brittleness of material are denoted using the load-
displacement curve as illustrated in Figure 4 in [TML02]. Similarly,
the reference data for brittle fracture is obtained from Figure 12
in [TML02]. Brittle material fractures completely after the elastic
region whereas ductile material partially fractures and then bends
due to plasticity. This proves that brittle and ductile material simu-
lation performed by our method closely matches the behaviour of
real-world materials, both qualitatively and quantitatively.

5.4.3. Brazilian Test

The Brazilian test is a laboratory test for the indirect measurement
of tensile strength. In this test, a vertical load is applied at the high-
est point of a cylinder, the axis of which is placed horizontally and
is supported on a horizontal plane. Here we use a cylinder made of

Figure 21: Brazilian test: Initial (left) and fractured (middle &
right) configuration of cement cylinder.

Figure 22: Brazilian test: Load displacement curve for original and
simulated experiments.

granite. In Figure 21 the initial (left) and fractured (middle & right)
configurations of the cylinder are shown. We compare the preci-
sion of the experiment performed in simulation using our method
with a similar real experiment from literature [GBA∗21] [Exp13]
by plotting their corresponding load-displacement curves in Fig-
ure 22. The close match between the two curves validates the accu-
racy of our simulation model. Simulation material parameters used
in this experiment are obtained from [GBA∗21].

5.5. Comparison with Existing Techniques

To the best of our knowledge, this is the first work in computer
graphics that presents a FEM-based fracture method that is graph-
based, remeshing-free, highly stable and can incorporate a large
number of cracks with little extra computational overhead on FEM.

Figure 23: XFEM vs Our Method: A cylinder is split with a sin-
gle cut. This is simulated using XFEM (top row) and Graph-based
FEM (bottom row). Graph-based FEM produces comparable re-
sults with significantly lower run-time.

COMPUTER GRAPHICS Forum.

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 15

Figure 24: XFEM vs Our Method: A cylinder is split into many
parts with multiple random cuts. This is simulated using XFEM
(top row) and Graph-based FEM (bottom row).

We have compared our method with other existing fracture simula-
tion algorithms in the literature.

5.5.1. XFEM vs Our method

Unlike XFEM [KBT17] [CMSK20] or VNA [SDF07] [WJST15],
the size of the system matrix remains constant throughout the
simulation, thus reducing the computational cost over standard
FEM substantially. We have implemented the method presented by
Koschier et al. [KBT17] and then compared it with our method.
The visual comparison between XFEM and graph-based FEM is
presented in Figure 23. As shown in the figure, we use a cylindrical
object consisting of 600 DOFs (nodes) and 1566 tetrahedra with
a pre-defined vertical split in the middle. To simulate the split, we
need to enrich appropriate nodes for XFEM and relabel the appro-
priate edges as damaged for our graph-based FEM simulation. Af-
ter enrichment, the number of DOFs (original nodes and enriched
nodes together) for XFEM simulation increases to 852 while the
number of DOFs remains the same in graph-based FEM. Next, we
let the disjoint piece fall under gravity and calculate the average
frame rate for both simulations. The simulation of XFEM takes
around 0.271 sec/frame while our graph-based FEM requires 0.009
sec/frame. Similarly, in Figure 24, we use another cylindrical object
consisting of 7.7k DOFs and 33.5k tetrahedra with multiple random
splits. After enrichment, the number of DOFs for XFEM simula-
tion increases to 9.2k while the number of DOFs remains the same
in graph-based FEM. The simulation of XFEM takes around 5.87
sec/frame while our graph-based FEM requires 0.253 sec/frame.

We also present a numerical comparison between our method
and XFEM-based fracture simulation by Chitalu et al. [CMSK20].
Using their open source code-base [Chi20], the XFEM-based
method requires 2743 sec to render 29 number of cuts for a solid
bunny model consisting of 23.7k tetrahedra. On the other hand, our
graph-based FEM model requires only 0.18 sec to render the same
number of cuts on the same bunny model. Thus, we have a clear ad-
vantage in terms of the speed of simulation. Moreover, simulating
a large amount of debris with existing FEM or XFEM-based solu-
tions in literature requires prohibitively expensive numerical com-
putation due to remeshing and linear scaling of the system matrix.
Our method can simulate a very high amount of fracture debris eas-
ily. Thus, our method enjoys the good characteristics of both FEM
and XFEM methods, without the overheads.

Moreover, while rendering multiple random cuts using XFEM,
we have noticed that quite often it generates skewed volume ratios
of the tetrahedral elements. This in turn makes the system matrix
degenerate with high condition number. Thus for a larger time step

Figure 25: Stability of XFEM vs Our Method: Multiple ran-
dom splits of a cylindrical object are simulated using XFEM (top
row) and Graph-based FEM (bottom row). For a larger time step(

∆t = 5×10−2sec
)

XFEM simulation becomes unstable while
our method remains stable.

(
∆t = 5×10−2sec

)
XFEM quickly becomes unstable (see Fig-

ure 25). On the contrary, as the system matrix remains unchanged
throughout the simulation for graph-based FEM, our method can
remain stable even for a considerably larger time step.

5.5.2. Remeshing-based FEM vs Our method

As no open source implementation of the work [OH99] that sim-
ulates fracture using FEM followed by appropriate remeshing, is
available, we compare our method to it by reproducing the frac-
ture based on the numerical data as reported in the paper. Brittle
fracture of an adobe wall, which contains 338 nodes and 1109 ele-
ments initially, is rendered in [OH99]. After the fracture, the mesh
size grows to 6892 nodes and 8275 elements in the final config-
uration with multiple disjoint segments. Plugging in the same set
of parameters as reported in [OH99], Vega FEM takes 0.11−0.14
sec/frame to simulate a similar number of disjoint objects, which
have an equal number of nodes and elements together. Compared
to this, our method can simulate the fracture of an object to pro-
duce the similar number of disjoint pieces in just 0.007 sec. Our
object mesh consists of approximately 400 nodes and 1200 ele-
ments with the same set of material parameters as before. In our
graph-based FEM, the number of nodes and tetrahedra remain un-
changed even after fracture, resulting in a speed-up in computation
time compared to remeshing-based methods. This shows a reduc-
tion by nearly 15 to 20 times in required simulation time using our
method.

6. Discussions and Future Work

We present a novel graph-based remeshing-free FEM approach for
ductile and brittle fracture. We derive theoretical proof to show that
our method extends to non-linear hyper-elastic strain energy den-
sities. We follow this with the complete algorithmic description of
our model. The high stability, speed and robustness of our method
are illustrated and established via multiple dynamic experiments
with different materials. We evaluate the appeal and realism of our

COMPUTER GRAPHICS Forum.

16 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

fracture simulations through results on objects made of a wide vari-
ety of materials. Comparing with benchmark fracture experiments,
we validate the correctness and accuracy of our method. We also
compare with existing XFEM simulation methods, providing quan-
titative and visual evidence about the better performance of our ap-
proach.

Even though we believe that our method is capable of produc-
ing particularly realistic fracture of a variety of materials at a high
speed, it does have some limitations in its current form. Currently,
an edge of an element in the object mesh can split into a maximum
of two parts, thus limiting the fracture of tetrahedral elements to a
maximum of four parts. We wish to extend our work to incorporate
a high number of fracture segments in a single element. Moreover,
even though our surface remeshing algorithm uses floating point
operations for element splitting, we do not employ any safeguard
to resolve rare errors that might occur due to floating point oper-
ations. Despite this, our algorithm is very stable, even when sim-
ulating highly complex fracture patterns. Some possible solutions
could be employing the methods from [WJST15] [WFS∗20] where
authors resolve floating point errors by providing an appropriate er-
ror bound or by looking for increasingly tighter sub-intervals. We
would like to model anisotropic fractures in future work.

References

[ADKK04] AOKI K., DONG N. H., KANEKO T., KURIYAMA S.: Phys-
ically based simulation of cracks on drying 3d solids. In Proceedings
Computer Graphics International, 2004. (2004), IEEE, pp. 357–364. 2

[AMM09] AMOR H., MARIGO J.-J., MAURINI C.: Regularized formu-
lation of the variational brittle fracture with unilateral contact: Numeri-
cal experiments. Journal of the Mechanics and Physics of Solids 57, 8
(2009), 1209–1229. URL: https://www.sciencedirect.com/
science/article/pii/S0022509609000659, doi:https:
//doi.org/10.1016/j.jmps.2009.04.011. 8

[BHTF07] BAO Z., HONG J.-M., TERAN J., FEDKIW R.: Fractur-
ing rigid materials. IEEE Transactions on Visualization and Computer
Graphics 13, 2 (Mar. 2007), 370–378. URL: https://doi.org/
10.1109/TVCG.2007.39, doi:10.1109/TVCG.2007.39. 3

[BWHT07] BARGTEIL A. W., WOJTAN C., HODGINS J. K., TURK
G.: A finite element method for animating large viscoplastic flow.
ACM Trans. Graph. 26, 3 (July 2007), 16–es. URL: https://doi.
org/10.1145/1276377.1276397, doi:10.1145/1276377.
1276397. 4, 9

[Chi20] CHITALU F. M.: Mcut, May 2020. URL: https://github.
com/cutdigital/mcut. 15

[CMSK20] CHITALU F. M., MIAO Q., SUBR K., KOMURA
T.: Displacement-correlated xfem for simulating brittle frac-
ture. Computer Graphics Forum 39, 2 (2020), 569–583. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.13953, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf.13953, doi:10.1111/cgf.13953.
2, 3, 15

[CYFW14] CHEN Z., YAO M., FENG R., WANG H.: Physics-inspired
adaptive fracture refinement. ACM Trans. Graph. 33, 4 (July 2014).
URL: https://doi.org/10.1145/2601097.2601115, doi:
10.1145/2601097.2601115. 3

[CZZ∗18] CHEN W., ZHU F., ZHAO J., LI S., WANG G.:
Peridynamics-based fracture animation for elastoplastic solids.
Computer Graphics Forum 37, 1 (2018), 112–124. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.13236, arXiv:https://onlinelibrary.wiley.com/

doi/pdf/10.1111/cgf.13236, doi:10.1111/cgf.13236.
2, 3

[ESHD05] ERLEBEN K., SPORRING J., HENRIKSEN K., DOHLMAN
K.: Physics-Based Animation (Graphics Series). Charles River Media,
Inc., USA, 2005. 10

[Exp13] EXPEDITIONWORKSHED: Brazilian test - tensile failure of con-
crete in slow motion, Sept. 2013. URL: https://www.youtube.
com/watch?v=6lkZIrLp_mE. 14

[GBA∗21] GHOULI S., BAHRAMI B., AYATOLLAHI M. R., DRIESNER
T., NEJATI M.: Introduction of a scaling factor for fracture tough-
ness measurement of rocks using the semi-circular bend test. Rock
Mechanics and Rock Engineering 54, 8 (2021), 4041 – 4058. URL:
https://doi.org/10.1007/s00603-021-02468-1, doi:
10.1007/s00603-021-02468-1. 14

[GMD13] GLONDU L., MARCHAL M., DUMONT G.: Real-time sim-
ulation of brittle fracture using modal analysis. IEEE Transactions on
Visualization and Computer Graphics 19, 2 (2013), 201–209. doi:
10.1109/TVCG.2012.121. 12

[HFG∗18] HU Y., FANG Y., GE Z., QU Z., ZHU Y., PRADHANA A.,
JIANG C.: A moving least squares material point method with dis-
placement discontinuity and two-way rigid body coupling. ACM Trans.
Graph. 37, 4 (July 2018). URL: https://doi.org/10.1145/
3197517.3201293, doi:10.1145/3197517.3201293. 2, 3

[HTK98] HIROTA K., TANOUE Y., KANEKO T.: Generation of crack
patterns with a physical model. The Visual Computer 14 (1998), 126
– 137. URL: https://doi.org/10.1007/s003710050128,
doi:10.1007/s003710050128. 2

[HTK00] HIROTA K., TANOUE Y., KANEKO T.: Simulation of
three-dimensional cracks. The Visual Computer 16 (2000), 371
– 378. URL: https://doi.org/10.1007/s003710000069,
doi:10.1007/s003710000069. 2

[HW15] HAHN D., WOJTAN C.: High-resolution brittle fracture simu-
lation with boundary elements. ACM Trans. Graph. 34, 4 (July 2015).
URL: https://doi.org/10.1145/2766896, doi:10.1145/
2766896. 2, 3

[HW16] HAHN D., WOJTAN C.: Fast approximations for boundary
element based brittle fracture simulation. ACM Trans. Graph. 35,
4 (July 2016). URL: https://doi.org/10.1145/2897824.
2925902, doi:10.1145/2897824.2925902. 2, 3

[HZG∗18] HU Y., ZHOU Q., GAO X., JACOBSON A., ZORIN D.,
PANOZZO D.: Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4
(July 2018), 60:1–60:14. URL: http://doi.acm.org/10.1145/
3197517.3201353, doi:10.1145/3197517.3201353. 11

[JP99] JAMES D. L., PAI D. K.: Artdefo: Accurate real time
deformable objects. In Proceedings of the 26th Annual Con-
ference on Computer Graphics and Interactive Techniques (USA,
1999), SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co.,
p. 65–72. URL: https://doi.org/10.1145/311535.311542,
doi:10.1145/311535.311542. 3

[JST∗16] JIANG C., SCHROEDER C., TERAN J., STOMAKHIN A.,
SELLE A.: The material point method for simulating continuum
materials. In ACM SIGGRAPH 2016 Courses (New York, NY,
USA, 2016), SIGGRAPH ’16, Association for Computing Machinery.
URL: https://doi.org/10.1145/2897826.2927348, doi:
10.1145/2897826.2927348. 3

[KBT17] KOSCHIER D., BENDER J., THUEREY N.: Robust extended
finite elements for complex cutting of deformables. ACM Trans. Graph.
36, 4 (July 2017). URL: https://doi.org/10.1145/3072959.
3073666, doi:10.1145/3072959.3073666. 2, 3, 15

[KE20] KIM T., EBERLE D.: Dynamic deformables: Implementation and
production practicalities. In ACM SIGGRAPH 2020 Courses (New York,
NY, USA, 2020), SIGGRAPH ’20, Association for Computing Machin-
ery. URL: https://doi.org/10.1145/3388769.3407490,
doi:10.1145/3388769.3407490. 4

COMPUTER GRAPHICS Forum.

https://www.sciencedirect.com/science/article/pii/S0022509609000659
https://www.sciencedirect.com/science/article/pii/S0022509609000659
https://doi.org/https://doi.org/10.1016/j.jmps.2009.04.011
https://doi.org/https://doi.org/10.1016/j.jmps.2009.04.011
https://doi.org/10.1109/TVCG.2007.39
https://doi.org/10.1109/TVCG.2007.39
https://doi.org/10.1109/TVCG.2007.39
https://doi.org/10.1145/1276377.1276397
https://doi.org/10.1145/1276377.1276397
https://doi.org/10.1145/1276377.1276397
https://doi.org/10.1145/1276377.1276397
https://github.com/cutdigital/mcut
https://github.com/cutdigital/mcut
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13953
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13953
https://doi.org/10.1111/cgf.13953
https://doi.org/10.1145/2601097.2601115
https://doi.org/10.1145/2601097.2601115
https://doi.org/10.1145/2601097.2601115
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13236
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13236
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13236
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13236
https://doi.org/10.1111/cgf.13236
https://www.youtube.com/watch?v=6lkZIrLp_mE
https://www.youtube.com/watch?v=6lkZIrLp_mE
https://doi.org/10.1007/s00603-021-02468-1
https://doi.org/10.1007/s00603-021-02468-1
https://doi.org/10.1007/s00603-021-02468-1
https://doi.org/10.1109/TVCG.2012.121
https://doi.org/10.1109/TVCG.2012.121
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1007/s003710050128
https://doi.org/10.1007/s003710050128
https://doi.org/10.1007/s003710000069
https://doi.org/10.1007/s003710000069
https://doi.org/10.1145/2766896
https://doi.org/10.1145/2766896
https://doi.org/10.1145/2766896
https://doi.org/10.1145/2897824.2925902
https://doi.org/10.1145/2897824.2925902
https://doi.org/10.1145/2897824.2925902
http://doi.acm.org/10.1145/3197517.3201353
http://doi.acm.org/10.1145/3197517.3201353
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/311535.311542
https://doi.org/10.1145/311535.311542
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1145/3072959.3073666
https://doi.org/10.1145/3072959.3073666
https://doi.org/10.1145/3072959.3073666
https://doi.org/10.1145/3388769.3407490
https://doi.org/10.1145/3388769.3407490

A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture 17

[KLB15] KOSCHIER D., LIPPONER S., BENDER J.: Adaptive tetrahe-
dral meshes for brittle fracture simulation. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Goslar,
DEU, 2015), SCA ’14, Eurographics Association, p. 57–66. 3, 12

[KRS16] KHODABAKHSHI P., REDDY J. N., SRINIVASA A.: Grafea: a
graph-based finite element approach for the study of damage and fracture
in brittle materials. Meccanica 51 (2016), 3129 – 3147. URL: https:
//doi.org/10.1007/s11012-016-0560-6, doi:10.1007/
s11012-016-0560-6. 2, 4, 6

[KRS19] KHODABAKHSHI P., REDDY J. N., SRINIVASA A.: A non-
local fracture criterion and its effect on the mesh dependency of
grafea. Acta Mechanica 230 (2019), 3593–3612. URL: https://
doi.org/10.1007/s00707-019-02479-8, doi:10.1007/
s00707-019-02479-8. 4, 7

[KTY09] KIKUUWE R., TABUCHI H., YAMAMOTO M.: An edge-
based computationally efficient formulation of saint venant-kirchhoff
tetrahedral finite elements. ACM Trans. Graph. 28, 1 (feb 2009).
URL: https://doi.org/10.1145/1477926.1477934, doi:
10.1145/1477926.1477934. 8

[LBC∗15] LEVINE J. A., BARGTEIL A. W., CORSI C., TESSENDORF
J., GEIST R.: A peridynamic perspective on spring-mass fracture. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (Goslar, DEU, 2015), SCA ’14, Eurographics Associa-
tion, p. 47–55. 2, 3

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node algorithm
for changing mesh topology during simulation. In ACM SIGGRAPH
2004 Papers (New York, NY, USA, 2004), SIGGRAPH ’04, Associa-
tion for Computing Machinery, p. 385–392. URL: https://doi.
org/10.1145/1186562.1015734, doi:10.1145/1186562.
1015734. 3

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials. In
Proceedings of Graphics Interface (Waterloo, CAN, 2004), Canadian
Human-Computer Communications Society, p. 239–246. 3

[MSU15] MIEHE C., SCHÄNZEL L.-M., ULMER H.: Phase field mod-
eling of fracture in multi-physics problems. part i. balance of crack sur-
face and failure criteria for brittle crack propagation in thermo-elastic
solids. Computer Methods in Applied Mechanics and Engineering 294
(2015), 449–485. URL: https://www.sciencedirect.com/
science/article/pii/S0045782514004423, doi:https:
//doi.org/10.1016/j.cma.2014.11.016. 8

[NTB∗91] NORTON A., TURK G., BACON B., GERTH J., SWEENEY
P.: Animation of fracture by physical modeling. The Visual Com-
puter 7 (1991), 210 – 219. URL: https://doi.org/10.1007/
BF01900837, doi:10.1007/BF01900837. 2

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.: Graph-
ical modeling and animation of ductile fracture. ACM Trans. Graph.
21, 3 (July 2002), 291–294. URL: https://doi.org/10.1145/
566654.566579, doi:10.1145/566654.566579. 2, 3

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling and
animation of brittle fracture. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Techniques
(USA, 1999), SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing
Co., p. 137–146. URL: https://doi.org/10.1145/311535.
311550, doi:10.1145/311535.311550. 2, 3, 15

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P., GROSS
M., GUIBAS L. J.: Meshless animation of fracturing solids. In
ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005), SIG-
GRAPH ’05, Association for Computing Machinery, p. 957–964.
URL: https://doi.org/10.1145/1186822.1073296, doi:
10.1145/1186822.1073296. 2

[PNdJO14] PFAFF T., NARAIN R., DE JOYA J. M., O’BRIEN J. F.:
Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33,
4 (July 2014). URL: https://doi.org/10.1145/2601097.
2601132, doi:10.1145/2601097.2601132. 3

[RS15] REDDY J., SRINIVASA A.: On the force–displacement

characteristics of finite elements for elasticity and related prob-
lems. Finite Elements in Analysis and Design 104 (2015),
35 – 40. URL: http://www.sciencedirect.com/
science/article/pii/S0168874X15000682, doi:https:
//doi.org/10.1016/j.finel.2015.04.011. 2, 4, 6

[SB12] SIFAKIS E., BARBIC J.: Fem simulation of 3d deformable
solids: A practitioner’s guide to theory, discretization and model
reduction. In ACM SIGGRAPH 2012 Courses (New York, NY,
USA, 2012), SIGGRAPH ’12, Association for Computing Machinery.
URL: https://doi.org/10.1145/2343483.2343501, doi:
10.1145/2343483.2343501. 4

[SDF07] SIFAKIS E., DER K. G., FEDKIW R.: Arbitrary cutting of
deformable tetrahedralized objects. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Goslar,
DEU, 2007), SCA ’07, Eurographics Association, p. 73–80. 3, 15

[SGK18] SMITH B., GOES F. D., KIM T.: Stable neo-hookean flesh
simulation. ACM Trans. Graph. 37, 2 (Mar. 2018). URL: https://
doi.org/10.1145/3180491, doi:10.1145/3180491. 4, 8

[Si15] SI H.: Tetgen, a delaunay-based quality tetrahedral mesh gener-
ator. ACM Transactions on Mathematical Software (TOMS) 41, 2 (Feb.
2015). URL: https://doi.org/10.1145/2629697, doi:10.
1145/2629697. 11

[Sri21] SRINIVASA A. R.: Discrete differential geometry and its role
in computational modeling of defects and inelasticity. Meccanica 56,
7 (2021). URL: https://par.nsf.gov/biblio/10297946,
doi:10.1007/s11012-021-01335-1. 9

[SSB13] SIN F. S., SCHROEDER D., BARBIČ J.: Vega: Non-linear
fem deformable object simulator. Computer Graphics Forum 32,
1 (2013), 36–48. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2012.03230.x,
arXiv:https://onlinelibrary.wiley.com/doi/
pdf/10.1111/j.1467-8659.2012.03230.x, doi:
10.1111/j.1467-8659.2012.03230.x. 4, 10

[SSC∗13] STOMAKHIN A., SCHROEDER C., CHAI L., TERAN J.,
SELLE A.: A material point method for snow simulation. ACM Trans.
Graph. 32, 4 (July 2013). URL: https://doi.org/10.1145/
2461912.2461948, doi:10.1145/2461912.2461948. 3

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling inelastic deforma-
tion: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph.
22, 4 (June 1988), 269–278. URL: https://doi.org/10.1145/
378456.378522, doi:10.1145/378456.378522. 2

[TML02] TRONSKAR J., MANNAN M., LAI M.: Measurement of
fracture initiation toughness and crack resistance in instrumented
charpy impact testing. Engineering Fracture Mechanics 69, 3
(2002), 321 – 338. URL: http://www.sciencedirect.com/
science/article/pii/S0013794401000777, doi:https:
//doi.org/10.1016/S0013-7944(01)00077-7. 13, 14

[TMOT12] TANG M., MANOCHA D., OTADUY M. A., TONG R.:
Continuous penalty forces. ACM Trans. Graph. 31, 4 (July 2012).
URL: https://doi.org/10.1145/2185520.2185603, doi:
10.1145/2185520.2185603. 10

[TMT10] TANG M., MANOCHA D., TONG R.: Fast continuous colli-
sion detection using deforming non-penetration filters. In Proceedings
of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (New York, NY, USA, 2010), I3D ’10, Association for Com-
puting Machinery, p. 7–13. URL: https://doi.org/10.1145/
1730804.1730806, doi:10.1145/1730804.1730806. 10

[WCL∗20] WOLPER J., CHEN Y., LI M., FANG Y., QU Z., LU J.,
CHENG M., JIANG C.: Anisompm: Animating anisotropic damage me-
chanics. ACM Trans. Graph. 39, 4 (July 2020). URL: https://doi.
org/10.1145/3386569.3392428, doi:10.1145/3386569.
3392428. 2, 3

[WDG∗19] WANG S., DING M., GAST T. F., ZHU L., GAGNIERE S.,
JIANG C., TERAN J. M.: Simulation and visualization of ductile frac-
ture with the material point method. Proc. ACM Comput. Graph. Inter-

COMPUTER GRAPHICS Forum.

https://doi.org/10.1007/s11012-016-0560-6
https://doi.org/10.1007/s11012-016-0560-6
https://doi.org/10.1007/s11012-016-0560-6
https://doi.org/10.1007/s11012-016-0560-6
https://doi.org/10.1007/s00707-019-02479-8
https://doi.org/10.1007/s00707-019-02479-8
https://doi.org/10.1007/s00707-019-02479-8
https://doi.org/10.1007/s00707-019-02479-8
https://doi.org/10.1145/1477926.1477934
https://doi.org/10.1145/1477926.1477934
https://doi.org/10.1145/1477926.1477934
https://doi.org/10.1145/1186562.1015734
https://doi.org/10.1145/1186562.1015734
https://doi.org/10.1145/1186562.1015734
https://doi.org/10.1145/1186562.1015734
https://www.sciencedirect.com/science/article/pii/S0045782514004423
https://www.sciencedirect.com/science/article/pii/S0045782514004423
https://doi.org/https://doi.org/10.1016/j.cma.2014.11.016
https://doi.org/https://doi.org/10.1016/j.cma.2014.11.016
https://doi.org/10.1007/BF01900837
https://doi.org/10.1007/BF01900837
https://doi.org/10.1007/BF01900837
https://doi.org/10.1145/566654.566579
https://doi.org/10.1145/566654.566579
https://doi.org/10.1145/566654.566579
https://doi.org/10.1145/311535.311550
https://doi.org/10.1145/311535.311550
https://doi.org/10.1145/311535.311550
https://doi.org/10.1145/1186822.1073296
https://doi.org/10.1145/1186822.1073296
https://doi.org/10.1145/1186822.1073296
https://doi.org/10.1145/2601097.2601132
https://doi.org/10.1145/2601097.2601132
https://doi.org/10.1145/2601097.2601132
http://www.sciencedirect.com/science/article/pii/S0168874X15000682
http://www.sciencedirect.com/science/article/pii/S0168874X15000682
https://doi.org/https://doi.org/10.1016/j.finel.2015.04.011
https://doi.org/https://doi.org/10.1016/j.finel.2015.04.011
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/3180491
https://doi.org/10.1145/3180491
https://doi.org/10.1145/3180491
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://par.nsf.gov/biblio/10297946
https://doi.org/10.1007/s11012-021-01335-1
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03230.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03230.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03230.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03230.x
https://doi.org/10.1111/j.1467-8659.2012.03230.x
https://doi.org/10.1111/j.1467-8659.2012.03230.x
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/378456.378522
https://doi.org/10.1145/378456.378522
https://doi.org/10.1145/378456.378522
http://www.sciencedirect.com/science/article/pii/S0013794401000777
http://www.sciencedirect.com/science/article/pii/S0013794401000777
https://doi.org/https://doi.org/10.1016/S0013-7944(01)00077-7
https://doi.org/https://doi.org/10.1016/S0013-7944(01)00077-7
https://doi.org/10.1145/2185520.2185603
https://doi.org/10.1145/2185520.2185603
https://doi.org/10.1145/2185520.2185603
https://doi.org/10.1145/1730804.1730806
https://doi.org/10.1145/1730804.1730806
https://doi.org/10.1145/1730804.1730806
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428

18 A. Mandal & P. Chaudhuri & S. Chaudhuri / Graph-based FEM Fracture

act. Tech. 2, 2 (July 2019). URL: https://doi.org/10.1145/
3340259, doi:10.1145/3340259. 2

[WFL∗19] WOLPER J., FANG Y., LI M., LU J., GAO M., JIANG
C.: Cd-mpm: Continuum damage material point methods for dy-
namic fracture animation. ACM Trans. Graph. 38, 4 (July 2019).
URL: https://doi.org/10.1145/3306346.3322949, doi:
10.1145/3306346.3322949. 2, 3, 8

[WFS∗20] WANG B., FERGUSON Z., SCHNEIDER T., JIANG X., AT-
TENE M., PANOZZO D.: A large scale benchmark and an inclusion-
based algorithm for continuous collision detection, 2020. arXiv:
2009.13349. 10, 16

[WJST15] WANG Y., JIANG C., SCHROEDER C., TERAN J.: An adap-
tive virtual node algorithm with robust mesh cutting. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Goslar, DEU, 2015), SCA ’14, Eurographics Association, p. 77–85. 3,
15, 16

[WMG96] WEISS J. A., MAKER B. N., GOVINDJEE S.: Finite element
implementation of incompressible, transversely isotropic hyperelastic-
ity. Computer Methods in Applied Mechanics and Engineering 135, 1
(1996), 107–128. URL: https://www.sciencedirect.com/
science/article/pii/0045782596010353, doi:https:
//doi.org/10.1016/0045-7825(96)01035-3. 6

[WRK∗10] WICKE M., RITCHIE D., KLINGNER B. M., BURKE S.,
SHEWCHUK J. R., O’BRIEN J. F.: Dynamic local remeshing for elasto-
plastic simulation. In ACM SIGGRAPH 2010 Papers (New York, NY,
USA, 2010), SIGGRAPH ’10, Association for Computing Machinery.
URL: https://doi.org/10.1145/1833349.1778786, doi:
10.1145/1833349.1778786. 3

[ZBG15] ZHU Y., BRIDSON R., GREIF C.: Simulating rigid body
fracture with surface meshes. ACM Trans. Graph. 34, 4 (July 2015).
URL: https://doi.org/10.1145/2766942, doi:10.1145/
2766942. 3

COMPUTER GRAPHICS Forum.

https://doi.org/10.1145/3340259
https://doi.org/10.1145/3340259
https://doi.org/10.1145/3340259
https://doi.org/10.1145/3306346.3322949
https://doi.org/10.1145/3306346.3322949
https://doi.org/10.1145/3306346.3322949
http://arxiv.org/abs/2009.13349
http://arxiv.org/abs/2009.13349
https://www.sciencedirect.com/science/article/pii/0045782596010353
https://www.sciencedirect.com/science/article/pii/0045782596010353
https://doi.org/https://doi.org/10.1016/0045-7825(96)01035-3
https://doi.org/https://doi.org/10.1016/0045-7825(96)01035-3
https://doi.org/10.1145/1833349.1778786
https://doi.org/10.1145/1833349.1778786
https://doi.org/10.1145/1833349.1778786
https://doi.org/10.1145/2766942
https://doi.org/10.1145/2766942
https://doi.org/10.1145/2766942

